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2. Solving equations
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3. Geometric proofs
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4. Stereographic Projection

There are two special projections: one onto

the x-axis, the other onto the y-axis. Both are

well-known. Using those projections one can

define functions sine and cosine. However, there

is another projection, less known to students,

a projection from a circle to the x-axis. It is

called the stereographic projection. We

will use it to provide geometric interpretations

of multiplication, division of real numbers, the

tangent function, and basic trigonometric formulae.
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Problem 4.1. Find the intersection of the line

joining (0, 1) and (1, 5) with the x-axis.
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Hint(s) to 4.1: Find an equation of the line

passing through the two points. How does one

find its intersection with the x-axis?
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Outline(s) of solution(s) to 4.1: A non-

vertical line is the graph of a linear function

f (x). A function f (x) is called linear if the

ratio (f (x2)−f (x1))/(x2−x1) is always constant

if x2 6= x1. That ratio is the slope m of the

geometric line. One can compute m from the

data. Now, setting x2 = x and x1 = 0 gives

(f (x)−1)/(x−0) = m as an equation of our line.

Its x-intercept is the point such that f (x) = 0,

so solve (f (x)− 1)/(x− 0) = m in that case.
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Answer to 4.1: −.25
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Problem 4.2. Find the intersection of the line

joining (0, 0, 1) and (1, 1,−1) with the xy-plane.
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Hint(s) to 4.2: Find an equation of the line

passing through the two points. How does one

find its intersection with the xy-plane?



    

12 JERZY DYDAK

Outline(s) of solution(s) to 4.2: A non-

vertical line on space is the graph of a linear

function f (t). A function f (t) is called linear

if the ratio (f (t2) − f (t1))/(t2 − t1) is always

constant if t2 6= t1. Physically, that constant

is the velocity v of a particle traversing our line.

One can compute v from the data assuming that

at t = 0 the particle is at point (0, 0, 1) and at

t = 1 it is at the other point. Now, setting t2 = t

and t1 = 0 gives (f (t)− (0, 0, 1))/(t− 0) = v as

an equation of our line. Its xy-intercept is the

point t such that the third coordinate of f (t)

equals 0, so solve (f (t) − (0, 0, 1))/(t − 0) = v

for such t, then find f (t).
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Answer to 4.2: (0.5, 0.5)
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Problem 4.3. Suppose b 6= 1. Show that the

line joining (0, 1) and (a, b) intersects the x-axis

at ( a
1−b, 0).
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Hint(s) to 4.3: Find an equation of the line

passing through the two points. How does one

find its intersection with the x-axis?
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Outline(s) of solution(s) to 4.3: A non-

vertical line is the graph of a linear function

f (x). A function f (x) is called linear if the

ratio (f (x2)−f (x1))/(x2−x1) is always constant

if x2 6= x1. That ratio is the slope m of the

geometric line. One can compute m from the

data. Now, setting x2 = x and x1 = 0 gives

(f (x)−1)/(x−0) = m as an equation of our line.

Its x-intercept is the point such that f (x) = 0,

so solve (f (x)− 1)/(x− 0) = m in that case.
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Problem 4.4. Suppose a 6= 0 and b 6= 1. Show

that a
1−b = b

a if (a, b) is on the circle centered at

(0, 1/2) with radius r = 1/2.
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Hint(s) to 4.4: What does it mean that a

point (x, y) lies on the circle centered at (0, 1/2)

of radius r = 1/2? Can you write an equation of

that circle? Is it equivalent to x
1−y = y

x if x 6= 0?
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Outline(s) of solution(s) to 4.4: A point

(x, y) lies on the circle centered at (0, 1/2) of

radius r = 1/2 if its distance to (0, 1/2) is 1/2.

Algebraically, it is the same as

x2 + (y − 1/2)2 = (1/2)2.

Expanding and simplifying gives

x2 + y2 − y = 0

which is equivalent to x
1−y = y

x if x 6= 0.
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Problem 4.5. Consider the stereographic projection

from the North Pole of the circle centered at

(0, 1/2) with radius r = 1/2 onto the x-axis.

Show that the image of the point with argument

α 6= π/2 is tan(α).
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Hint(s) to 4.5:

1. (Algebraic) If a point (x, y) has argument

α, how can tan(α) be expressed using x and

y? How does that compare to the stereographic

projection of (x, y)?

2. (Geometric) Draw a picture of the stereographic

projection from the North PoleN viaA = (x, y)

to B = (t, 0). Can you calculate all the angles

on the picture? What are their tangents?
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Outline(s) of solution(s) to 4.5:

1. (Algebraic) If a point (x, y) has argument α,

then tan(α) = y/x. The stereographic projection

of (x, y) is x
1−y and that equals y

x = tan(α) by

4.4.

2. (Geometric) Draw a picture of the stereographic

projection from the North PoleN viaA = (x, y)

toB = (t, 0). If α is the argument ofA, then the

angle \ONB equals α. Since tan(\ONB) = t,

we are done.
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Problem 4.6. Consider the stereographic projection

from the North Pole of the circle centered at

(0, 1/2) with radius r = 1/2 onto the x-axis.

Show that one can construct −1
a , a > 0, by going

straight from (a, 0) to (0, 1) and then turning left

via 90 degrees and going straight until the x-axis

is met again.



   

24 JERZY DYDAK

Hint(s) to 4.6: Draw a picture of the stereographic

projection from the North PoleN viaB = (x, y)

to A = (a, 0). Then draw a line through N

perpendicular to NA. Can you calculate all the

angles on the picture? What are their tangents?
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Outline(s) of solution(s) to 4.6: Draw a

picture of the stereographic projection from the

North Pole N via B = (x, y) to A = (a, 0).

Then draw a line through N perpendicular to

NA. Let t be the x-intercept of that line. If

α is the argument of B, then the angle \ONA

equals α and the angle \OCN = α, where C =

(t, 0). Since tan(\OCN) = −1/t, we are done.
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Problem 4.7. Consider the stereographic projection

from the North Pole of the circle centered at

(0, 1/2) with radius r = 1/2 onto the x-axis.

Show that one can construct a
b , a, b > 0, by

going straight from (a, 0) to the y-axis on the line

forming the angle π/2+β with the x-axis, where

b is the projection of the point with argument β.
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Hint(s) to 4.7: Draw a picture of the stereographic

projection from the North PoleN viaX = (x, y)

to B = (b, 0). Then draw a line through A =

(a, 0) parallel to NB. That line forms the angle

π/2 + β with the x-axis. Can you calculate its

y-intercept?
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Outline(s) of solution(s) to 4.7: Draw a

picture of the stereographic projection from the

North Pole N via X = (x, y) to B = (b, 0).

Then draw a line through A = (a, 0) parallel to

NB. That line forms the angle π/2 + β with

the x-axis. Its y-intercept equals a/b.
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Problem 4.8. Consider the stereographic projection

from the North Pole of the circle centered at

(0, 1/2) with radius r = 1/2 onto the x-axis.

Show that one can construct a · b, a, b > 0,

by going straight from (0, a) to the x-axis on

the line forming the angle π − β with the y-

axis, where b is the projection of the point with

argument β.
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Hint(s) to 4.8: Draw a picture of the stereographic

projection from the North PoleN viaX = (x, y)

to B = (b, 0). Then draw a line through A =

(0, a) parallel to NB. That line forms the angle

π/2 − β with the y-axis. Can you calculate its

x-intercept?
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Outline(s) of solution(s) to 4.8: Draw a

picture of the stereographic projection from the

North Pole N via X = (x, y) to B = (b, 0).

Then draw a line through A = (0, a) parallel to

NB. That line forms the angle π/2 − β with

the y-axis. Its x-intercept equals a · b.
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Problem 4.9. Consider the stereographic projection

from the North Pole of the circle centered at

(0, 1/2) with radius r = 1/2 onto the x-axis.

If a > 0, compute the altitudes of the triangle

ABC, A = (−a, 0), B = (a, 0), C = (0, 1), in

two different ways and conclude that sin(2 ·α) =

2 · sin(α) · cos(α) for positive angles α < π/2.
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Hint(s) to 4.9: Let h = AD be the altitude

of triangle ABC from vertex A onto the side

CB. Consider both triangles ADC and ADB.

Can you relate their angles to α, the argument

of the point mapped to B by the stereographic

projection?
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Outline(s) of solution(s) to 4.9: Let h =

AD be the altitude of triangle ABC from vertex

A onto the side CB. Consider both triangles

ADC and ADB. Let α be the argument of

the point mapped to B by the stereographic

projection. The angle \ACB = 2 ·α, the angle

\ABD = π/2−α. Therefore BC = 1/ cos(α),

h = NA · sin(2 · α), and h = AB · cos(α) =

2 tan(α)·cos(α) = 2·sin(α). Comparing the two

formulae for h gives sin(2·α) = 2·sin(α)·cos(α).
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Problem 4.10. Consider the stereographic projection

from the North Pole of the circle centered at

(0, 1/2) with radius r = 1/2 onto the x-axis.

If a > 0, compute the bases of altitudes of

the triangle ABC, A = (−a, 0), B = (a, 0),

C = (0, 1), in two different ways and conclude

that cos(2·α) = 2·cos2(α)−1 for positive angles

α < π/2.
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Hint(s) to 4.10: Let h = AD be the altitude

of triangle ABC from vertex A onto the side

CB. Consider both triangles ADC and ADB.

Can you relate their angles to α, the argument

of the point mapped to B by the stereographic

projection? Can you compute BD and CD

using both triangles?
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Outline(s) of solution(s) to 4.10: Let

h = AD be the altitude of triangle ABC from

vertexA onto the sideCB. Consider both triangles

ADC and ADB. Let α be the argument of

the point mapped to B by the stereographic

projection. The angle \ACB = 2 ·α, the angle

\ABD = π/2−α. Therefore CA = 1/ cos(α),

so CD = CA · cos(2 · α) = cos(2 · α)/ cos(α)

and BD = AB · sin(α) = 2 · tan(α) · sin(α).

Since CB = BD + DC, one gets cos(2 · α) =

1− 2 · sin2(α).
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Problem 4.11. Consider the stereographic projection

from the North Pole of the circle centered at

(0, 1/2) with radius r = 1/2 onto the x-axis. If

a, b > 0, compute the altitudes of the triangle

ABC, A = (−a, 0), B = (b, 0), C = (0, 1),

in two different ways and conclude that sin(α+

β) = sin(α) · cos(β) + cos(α) · sin(β) for positive

angles α, β < π/2.
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Hint(s) to 4.11: Let h = AD be the altitude

of triangle ABC from vertex A onto the side

CB. Consider both triangles ADC and ADB.

Can you relate their angles to β, the argument

of the point mapped to B by the stereographic

projection and α, the argument of the point

mapped to −A by the stereographic projection?
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Outline(s) of solution(s) to 4.11: Let

h = AD be the altitude of triangle ABC from

vertexA onto the sideCB. Consider both triangles

ADC and ADB. Let β be the argument of

the point mapped to B by the stereographic

projection. Let α be the argument of the point

mapped to −A by the stereographic projection.

The angle \ACB = α+β, the angle \ABD =

π/2 − β. Therefore BC = 1/ cos(α), h =

NA·sin(α+β), and h = AB·cos(β) = 2 tan(α)·
cos(β). Comparing the two formulae for h gives

sin(α + β) = sin(α) · cos(β) + cos(α) · sin(β).
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Problem 4.12. Consider the stereographic projection

from the North Pole of the circle centered at

(0, 1/2) with radius r = 1/2 onto the x-axis.

If a, b > 0, compute the bases of altitudes of

the triangle ABC, A = (−a, 0), B = (b, 0),

C = (0, 1), in two different ways and conclude

that cos(α+β) = cos(α) ·cos(β)−sin(α) ·sin(β)

for positive angles α, β < π/2.
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Hint(s) to 4.12: Let h = AD be the altitude

of triangle ABC from vertex A onto the side

CB. Consider both triangles ADC and ADB.

Can you relate their angles to β, the argument

of the point mapped to B by the stereographic

projection and α, the argument of the point

mapped to −A by the stereographic projection?
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Outline(s) of solution(s) to 4.12: Let

h = AD be the altitude of triangle ABC from

vertexA onto the sideCB. Consider both triangles

ADC and ADB. Let β be the argument of

the point mapped to B by the stereographic

projection. Let α be the argument of the point

mapped to −A by the stereographic projection.

The angle \ACB = α+β, the angle \ABD =

π/2 − β. Therefore AC = 1/ cos(α), CD =

AC · cos(α + β), and DB = AB · sin(β) =

(tan(α) + tan(β)) · sin(β). Analyzing CB =

CD+DB gives cos(α+ β) = cos(α) · cos(β)−
sin(α) · sin(β).
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Problem 4.13. Consider the stereographic projection

from the North Pole of the circle centered at

(0, 1/2) with radius r = 1/2 onto the x-axis.

If b > a > 0, consider the intersection C of

the vertical line x = b with the line passing

through the North Pole and perpendicular to

the line joining North Pole and (a, 0). Show that

C = (b, 1+a·b) and conclude that tan(β−α) =
tan(β)−tan(α)

1+tan(α)·tan(β) for positive angles α < β < π/2.
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Hint(s) to 4.13: Draw a picture of the stereographic

projection from the North Pole N via B′ =

(x, y) to B = (b, 0) and of the stereographic

projection from the North Pole N via A′ =

(x, y) to A = (a, 0). Then draw a line through

N perpendicular toNB and mark its intersection

C with line x = b. What is the angle between

NA and NB in terms of arguments α of A′ and

β of B′? Do you see that all points N , A, B,

and C lie on one circle?
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Outline(s) of solution(s) to 4.13: Draw

a picture of the stereographic projection from the

North Pole N via B′ = (x, y) to B = (b, 0) and

of the stereographic projection from the North

Pole N via A′ = (x, y) to A = (a, 0). Then

draw a line throughN perpendicular toNB and

mark its intersection C with line x = b. The

angle between NA and NB can be expressed in

terms of arguments α of A′ and β of B′ as β−α.

Since all points N , A, B, and C lie on one circle

with diameter NB, the angle between CA and

CB is also β − α. Apply that information to

the right triangle ABC.
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5. Basic calculations with complex

numbers

Problem 5.1. Define complex numbers. What

do we mean by a + b · i?
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Answer to 5.1: Geometrically, a complex

number is a point on the plane (a plane with

origin). That way of expressing complex numbers

is referred to as Argand diagram.

Algebraically, a complex number is a pair (a, b)

of real numbers. a + b · i is one of possible

notations for (a, b).
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Problem 5.2. Define the modulus of a complex

numbers z. What are possible notations for modulus

of z?
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Answer to 5.2: Geometrically, the modulus

of a complex number z is its distance to the

origin of the plane.

Algebraically, the modulus of |z| = a + b · i
is
√
a2 + b2. |z| is one of possible notations for

modulus of z.
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Problem 5.3. Define the argument of a complex

numbers z 6= 0. What are possible notations for

argument of z?
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Answer to 5.3: The argument of a complex

number z 6= 0 is the angle from the x-axis to z.

arg(z) is one of possible notations for argument

of z.
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Problem 5.4. Define the real part of a complex

numbers z. What are possible notations for real

part of z?
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Answer to 5.4: The real part of a complex

number z is its x-coordinate. Re(z) is one of

possible notations for real part of z.

Algebraically, Re(a + b · i) = a.

Geometrically, the function z → Re(z) is one

of the basic projections of the plane, the orthogonal

projection onto x-axis.
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Problem 5.5. Define the imaginary part of a

complex numbers z. What are possible notations

for imaginary part of z?
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Answer to 5.5: The imaginary part of a

complex number z is its y-coordinate. Im(z)

is one of possible notations for imaginary part of

z.

Algebraically, Im(a + b · i) = b.

Geometrically, the function z → Im(z) is one

of the basic projections of the plane, the orthogonal

projection onto y-axis.
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Problem 5.6. Define imaginary complex numbers

z.
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Answer to 5.6: z is an imaginary complex

number if it is a real multiple of i.

Algebraically, z = b · i.
Geometrically, z lies on the y-axis.
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Problem 5.7. Define the conjugate of a complex

number z. What is the geometrical meaning of

the conjugate of z?
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Answer to 5.7: Let z = a + b · i.
Algebraically, z̄ = a− b · i.
Geometrically, z̄ is the reflection of z in the real

axis.
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Problem 5.8. Sketch a picture illustrating addition

of complex numbers.
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Answer to 5.8: To draw z1 + z2 slide vector

z2 on vector z1.
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Problem 5.9. Find z = (1 + 2 · i) · (1 + 1 · i)
without using a calculator.
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Answer to 5.9: z = −1 + 3 · i
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Problem 5.10. Express z = i104 as a + b · i
without using a calculator.
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Hint(s) to 5.10: Is there any pattern in

powers of i?
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Answer to 5.10: 1
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Problem 5.11. Sketch 1 + i. Find and sketch

(1 + i)2.
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Answer to 5.11: 2 · i
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Problem 5.12. Sketch 1− i. Find and sketch

(1− i)2.
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Answer to 5.12: −2 · i
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Problem 5.13. Express z = (1+i)10 as a+b·i
without using a calculator.
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Hint(s) to 5.13: Is there any pattern in

powers of 1± i?
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Answer to 5.13: z = 0 + 32 · i
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Problem 5.14. Express z = (1+i)103/(1−i)99

as a + b · i without using a calculator.
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Answer to 5.14: z = 0 + 4 · i
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Problems 5.15-5.16 form written Homework 3

due February 16,2004.

Problem 5.15. Let a =
√

3 and z = (−1 −
a · i)/2. Show z2 = z̄ and z3 = 1 without using

a calculator.
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Problem 5.16. Let a =
√

3 and z = (1 − a ·
i)/2. Show z2 = −z̄ and z3 = −1 without using

a calculator.
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Problem 5.17. Let a =
√

3 and z = (−1 −
a · i)/2. Compute z9 without using a calculator.
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Hint(s) to 5.17: Is there any pattern in

powers of z?
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Answer to 5.17: 1
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Problem 5.18. Let a =
√

3 and z = (1 + a ·
i)/2. Compute z8 without using a calculator.
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Hint(s) to 5.18: Is there any pattern in

powers of z?
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Answer to 5.18: (−1− a · i)/2
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