Problem 7.6. Let $a \neq 0$, b, and c be complex constants. Show that the quadratic equation $a \cdot z^2 + b \cdot z + c = 0$ has one or two roots.

Problem 7.7. Let b and c be complex constants such that $z^2 + b \cdot z + c = 0$ has only real roots. Show that b and c are real.

8. Geometric figures described using complex numbers

Problem 8.1. Sketch and describe the set of complex numbers satisfying |z| = 2 without using a calculator.

JERZY DYDAK

20

Answer to 8.1: The circle at (0, 0) of radius 2.

Problem 8.2. Sketch and describe the set of complex numbers satisfying |z - 1| = 2 without using a calculator.

Answer to 8.2: The circle at (1, 0) of radius 2.

Problem 8.3. Sketch and describe the set of complex numbers satisfying |z/2-1| = 2 without using a calculator.

Answer to 8.3: The circle at (2,0) of radius 4.

Problem 8.4. Sketch and describe the set of complex numbers satisfying $|2 \cdot z - i| > 4$ without using a calculator.

Answer to 8.4: Outside of the circle at (0, 1/2) of radius 2.

GEOMETRY AND COMPLEX NUMBERS (February 11, 2004) 27 **Problem 8.5.** Sketch and describe the set of complex numbers satisfying $|2 \cdot z + i| < 4$ without using a calculator. **Answer to 8.5**: Inside of the circle at (0, -1/2) of radius 2.

Problem 8.6. Sketch and describe the set of complex numbers satisfying |z - 2| = |z - 1| without using a calculator.

Answer to 8.6: The vertical line passing through (1.5, 0).

Problem 8.7. Sketch and describe the set of complex numbers satisfying $|z - 2 \cdot i| = |z - 1 \cdot i|$ without using a calculator.

Answer to 8.7: The horizontal line passing through (0, 1.5).

Problem 8.8. Sketch and describe the set of complex numbers satisfying Re(z) = 2 without using a calculator.

Answer to 8.8: The vertical line passing through (2, 0).

Problem 8.9. Sketch and describe the set of complex numbers satisfying Re(z) > 2 without using a calculator.

Answer to 8.9: The half-plane to the right of the vertical line passing through (2, 0).

Problem 8.10. Sketch and describe the set of complex numbers satisfying Im(z) = 2 without using a calculator.

Answer to 8.10: The horizontal line passing through (0, 2).

Problem 8.11. Sketch and describe the set of complex numbers satisfying Im(z) < 2 without using a calculator.

Answer to 8.11: The half-plane below the horizontal line passing through (0, 2).

GEOMETRY AND COMPLEX NUMBERS (February 11, 2004) 41 **Problem 8.12.** Sketch and describe the set of complex numbers satisfying Re(2/z) = 1 without using a calculator. **Answer to 8.12**: The circle at (1, 0) of radius 1 minus origin.

Problem 8.13. Sketch and describe the set of complex numbers satisfying Im(2/z) = 1 without using a calculator.

Answer to 8.13: The circle at (0, -1) of radius 1 minus origin.

Problem 8.14. Sketch and describe the set of complex numbers satisfying Re(2/(z-1)) = 1 without using a calculator.

Answer to 8.14: The circle at (2, 0) of radius 1 minus (1, 0).

Problem 8.15. Sketch and describe the set of complex numbers satisfying Im(2/(z-1)) = 1 without using a calculator.

Answer to 8.15: The circle at (1, -1) of radius 1 minus (1, 0).

Problem 8.16. Sketch and describe the set of complex numbers satisfying $|2 \cdot z/(z+3)| = 1$ without using a calculator.

JERZY DYDAK

50

Answer to 8.16: The circle at (1, 0) of radius 2.

Problem 8.17. Sketch and describe the set of complex numbers satisfying |(z+4)/(z+1)| = 2 without using a calculator.

JERZY DYDAK

Answer to 8.17: The circle at (0, 0) of radius 2.

52

Problem 8.18. Suppose $a \neq 0$ and b are complex constants. Show that $Im(a \cdot z + b) = 0$ is the equation of a straight line on the plane. Can every straight line be expressed by such an equation?

MATH DEPT, UNIVERSITY OF TENNESSEE, KNOXVILLE, TN 37996-1300, USA $E\text{-mail}\ address:\ dydak@math.utk.edu$