9. Triangle Inequality for complex numbers

Problem 9.1. Suppose z_1 and z_2 are complex numbers such that $z_1 + z_2$ is real. Prove that $|z_1 + z_2|$ is not greater than $|z_1| + |z_2|$ by using similar inequality for real numbers.

Problem 9.2. Suppose z_1 and z_2 are non-zero complex numbers such that $z_1 + z_2$ is real. Prove that if $|z_1 + z_2| = |z_1| + |z_2|$, then z_1 and z_2 are real numbers whose ratio is positive.

12

Problem 9.3. Prove algebraically that $|z_1 + z_2|$ is not greater than $|z_1| + |z_2|$. Do not use Triangle Inequality. This is Triangle Inequality.

14

Problem 9.4. Suppose z_1 and z_2 are non-zero complex numbers. Prove that if $|z_1+z_2| = |z_1| + |z_2|$, then z_1/z_2 is a positive real number.

10. Multiplication of complex Numbers

Problem 10.1. Prove geometrically that $i \cdot z$ is z rotated counterclockwise by 90 degrees.

Problem 10.2. [1, 1] is rotated clockwise by 90 degrees. Find the resulting vector.

Hint(s) to 10.2: What is the result of rotating e_1 and e_2 ? What is the result of rotating $a \cdot e_1 + b \cdot e_2$?

Answer to 10.2: [1, -1]

18

GEOMETRY AND COMPLEX NUMBERS (February 19, 2004) 19 **Problem 10.3.** Prove geometrically that $(\cos(\theta) + i \cdot \sin(\theta)) \cdot z$ is z rotated counterclockwise by θ radians.

Problem 10.4. The geometrical interpretation of $z \cdot (\cos(\alpha) + i \cdot \sin(\alpha))$ is z rotated counterclockwise by angle α . [3,4] is rotated **clockwise** by 6 degrees. Find the resulting vector.

Hint(s) to 10.4: Switch to complex numbers and stick into a calculator.

Answer to 10.4: [3.4, 3.66]

GEOMETRY AND COMPLEX NUMBERS (February 19, 2004) 23 **Problem 10.5.** Sketch a picture illustrating multiplication of unit complex numbers. **Problem 10.6.** Show that $(1+2 \cdot i)^{2001} + (1-2 \cdot i)^{2001}$ is a real number.

Hint(s) to 10.6: Show that the number equals its conjugate.

Problem 10.7. Prove that $z/(z^2+1)$ is a real number if z lies on the unit circle.

Hint(s) to 10.7: Show that the number equals its conjugate.

Problem 10.8. Prove that $z/(z+1)^2$ is a real number if z lies on the unit circle.

Hint(s) to 10.8: Show that the number equals its conjugate.

Problem 10.9. Show that $i \cdot (1+z)/(1-z)$ is a real number if $z \neq 1$ is a unit complex number.

GEOMETRY AND COMPLEX NUMBERS (February 19, 2004) 31 Hint(s) to 10.9: Show that the number equals its conjugate.

Problem 10.10. Show that $(1-z^2) \cdot w/(w^2-z^2)$ is a real number if $z \neq w$ are unit complex numbers.

Hint(s) to 10.10: Show that the number equals its conjugate.

MATH DEPT, UNIVERSITY OF TENNESSEE, KNOXVILLE, TN 37996-1300, USA $E\text{-mail}\ address:\ dydak@math.utk.edu$