11. Scalar product and vector product for complex numbers

Problem 11.1. Given two complex numbers zand w, the scalar product S(z, w) is defined as $(z \cdot \overline{w} + \overline{z} \cdot w)/2$. Show that $S(z, w) = Re(\overline{z} \cdot w)$. Conclude that $S(z, w) = |z| \cdot |w| \cdot \cos(\alpha)$, where α is the angle from z to w measured in counterclockwise direction.

Problem 11.2. Given two complex numbers z and w, the scalar product S(z, w) is defined as $(z \cdot \overline{w} + \overline{z} \cdot w)/2$. Show that $|z + w|^2 = |z|^2 + |w|^2 + 2 \cdot S(z, w)$. Derive the Cosine Theorem from that equality.

Problem 11.3. Given two complex numbers z and w, the scalar product S(z, w) is defined as $(z \cdot \overline{w} + \overline{z} \cdot w)/2$. Show algebraically that S(z, w) = S(w, z).

Problem 11.4. Given two complex numbers z and w, the scalar product S(z, w) is defined as $(z \cdot \overline{w} + \overline{z} \cdot w)/2$. Show algebraically that $S(z, a \cdot w + b \cdot v) = a \cdot S(z, w) + b \cdot S(z, v)$ provided a and b are real.

17

Problem 11.5. Given two complex numbers zand w, the vector product V(z, w) is defined as $i \cdot (z \cdot \overline{w} - \overline{z} \cdot w)/2$. Show that $V(z, w) = Im(\overline{z} \cdot w)$. Conclude that $V(z, w) = |z| \cdot |w| \cdot \sin(\alpha)$, where α is the angle from z to w measured in counterclockwise direction. Conclude that |V(z, w)|is the area of parallelogram formed by z and w.

Problem 11.6. Given two complex numbers z and w, the vector product V(z, w) is defined as $i \cdot (z \cdot \overline{w} - \overline{z} \cdot w)/2$. Show algebraically that V(z, w) = -V(w, z).

Problem 11.7. Given two complex numbers z and w, the vector product V(z, w) is defined as $i \cdot (z \cdot \overline{w} - \overline{z} \cdot w)/2$. Show algebraically that $V(z, a \cdot w + b \cdot v) = a \cdot V(z, w) + b \cdot V(z, v)$ provided a and b are real.

Problem 11.8. Given two complex numbers zand w, the scalar product S(z, w) is defined as $(z \cdot \overline{w} + \overline{z} \cdot w)/2$. If $z = x_1 + y_1 \cdot i$ and $w = x_2 + y_2 \cdot i$, show that $S(z, w) = x_1 \cdot x_2 + y_1 \cdot y_2$. **Problem 11.9.** Given two complex numbers zand w, the vector product V(z, w) is defined as $i \cdot (z \cdot \overline{w} - \overline{z} \cdot w)/2$. If $z = x_1 + y_1 \cdot i$ and $w = x_2 + y_2 \cdot i$, show that $V(z, w) = x_1 \cdot y_2 - x_2 \cdot y_1$, the determinant of the matrix $[[x_1, y_1], [x_2, y_2]]$. **Problem 11.10.** Find the area of the triangle with vertices P(-1, 1), Q(1, -1) and R(1, 1).

Hint(s) to 11.10: How are triangles related to parallelograms ? How do we compute areas of parallelograms ?

Answer to 11.10: 2

25

Problem 11.11. Find the remaining two vertices Q and S of the square whose diagonal joins points P = (1, -1) and R = (3, 1).

Hint(s) to 11.11: Can you find the center C of the square ? How does one get vector CQ from the vector CP ?

Answer to 11.11: Q = (1, 1), S = (3, -1)

Problem 11.12. If $z_1/z_2 = a + b \cdot i$, then $z_1 = a \cdot z_2 + b \cdot (i \cdot z_2)$, $a \cdot z_2$ is parallel to z_2 , and $b \cdot (i \cdot z_2)$ is perpendicular to z_2 . Express vector $\vec{v} = [-2, 4]$ as $\vec{v} = \vec{v}_1 + \vec{v}_2$, where \vec{v}_1 is parallel to [1, 1] and \vec{v}_2 is perpendicular to [1, 1]. Report \vec{v}_2 .

Answer to 11.12: [-3, 3]

MATH DEPT, UNIVERSITY OF TENNESSEE, KNOXVILLE, TN 37996-1300, USA $E\text{-mail}\ address:\ dydak@math.utk.edu$