9. Triangle Inequality for complex Numbers

10. Multiplication of complex numbers

Problem 10.1. Prove geometrically that $i \cdot z$ is z rotated counterclockwise by 90 degrees.

Problem 10.2. (HA) [4, 2] is rotated counterclockwise by 90 degrees. Find the resulting vector.

Hint(s) to 10.2: What is the result of rotating e_1 and e_2 ? What is the result of rotating $a \cdot e_1 + b \cdot e_2$?

Answer to 10.2: [-2, 4]

Problem 10.3. Prove geometrically that $(\cos(\theta) + i \cdot \sin(\theta)) \cdot z$ is z rotated counterclockwise by θ radians.

Problem 10.4. (HSA) The geometrical interpretation of $z \cdot (\cos(\alpha) + i \cdot \sin(\alpha))$ is z rotated counterclockwise by angle α . [-7, 24] is rotated **clockwise** by 60 degrees. Find the resulting vector.

Hint(s) to 10.4: Clockwise rotation corresponds to negative angles.

Answer to 10.4: [17.28, 18.06]

Problem 10.5. Sketch a picture illustrating multiplication of unit complex numbers.

Problem 10.6. (H) Show that $(3+4 \cdot i)^{2004} + (3-4 \cdot i)^{2004}$ is a real number.

Hint(s) to 10.6: Show that the number equals its conjugate.

Problem 10.7. (H)

Prove that $z/(z^2+1)$ is a real number if z lies on the unit circle.

Hint(s) to 10.7: Show that the number equals its conjugate. Use that $1/z = \bar{z}$ if z is a unit complex number.

Problem 10.8. (H)

Prove that $z/(z+1)^2$ is a real number if z lies on the unit circle.

Hint(s) to 10.8: Show that the number equals its conjugate. Use that $1/z = \bar{z}$ if z is a unit complex number.

Problem 10.9. (H) Show that $i \cdot (1+z)/(1-z)$ is a real number if $z \neq 1$ is a unit complex number.

Hint(s) to 10.9: Show that the number equals its conjugate. Use that $1/z = \bar{z}$ if z is a unit complex number.

Problem 10.10. (H) Show that $(1-z^2)\cdot w/(w^2-z^2)$ is a real number if $z\neq w$ are unit complex numbers.

Hint(s) to 10.10: Show that the number equals its conjugate. Use that $1/z = \bar{z}$ if z is a unit complex number.

MATH DEPT, UNIVERSITY OF TENNESSEE, KNOXVILLE, TN 37996-1300, USA $E\text{-}mail\ address:$ dydak@math.utk.edu