
Math 460 Homework 2 Solutions

1. Let σ be reflection in the line y = x , and let τ be reflection in the line x = 1 . The

composite transformation σ ◦ τ ◦σ is a reflection; what is its mirror line?

We have
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Composing these transformations gives
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whence στσ is reflection in the line y = 1 .

2. Let σ , τ be reflections in lines `1 , `2 respectively. Determine the mirror line ofσ ◦τ◦σ .

Hint: find the fixed points of this composite transformation.

Let x be a point on the line σ(`2) . Then σ(x) lies on `2 , whence σ(x) is fixed by

τ and στσ(x) = σσ(x) = x . Therefore the set of fixed points of στσ contains the

line σ(`2) . However, an orientation-reversing isometry of the Euclidean plane is either

a reflection or a glide-reflection, and since the set of fixed points of στσ is non-empty,

στσ must be a reflection, with mirror-line σ(`2) .

3. Let σ , τ be inversions in circles C1 , C2 respectively. The composite σ ◦ τ ◦ σ is an

inversion; identify the circle in which it inverts points.

Let x be a point on σ(C2) (σ(C2) is either a circle or possibly a stright line.) Then σ(x)

lies on C2 , whence σ(x) is fixed by τ and στσ(x) = σσ(x) = x . Therefore the set of

fixed points of στσ contains σ(C2) . It is given that στσ is an inversion; its inverting

circle is its set of fixed points, namely σ(C2) (exceptionally σ(C2) could be a straight line,

i.e. a “circle” of infinite radius.)



4. Let C1 be the circle of radius 1 centered at the origin, and let C2 be the circle of radius

1 centered at the point (3 , 0) . Let σ , τ be inversions in the circles C1 , C2 respectively.

Show that if P is any point not on the x-axis, then P is not fixed by τ ◦σ . Find all points

fixed by τ ◦ σ .

(This neat argument was used in some people’s homework.) Let Q1 , Q2 be the centers of

C1 , C2 respectively, and suppose that P is fixed by τσ . First we eliminate some trivial

cases. We note that τσ(Q1) = τ(∞) = Q2 ≠ Q1 , and that τσ(Q2) cannot equal Q2 ,

since σ(Q2) ≠ ∞ . Therefore P cannot equal either of Q1 , Q2 . Furthermore, if P ∈ C1 ,

then τσ(P) = τ(P) cannot equal P as the circles C1 , C2 are disjoint; similarly, if P ∈ C2 ,

then σ(P) ∉ C2 , whence τσ(P) ∉ C2 and thus P ≠ τσ(P) . Therefore we may also

assume that P does not lie on either circle.

It follows that the points Q1 , P , σ(P) are distinct and collinear, and that the points

Q2 , P , τ(P) are distinct and collinear. But τσ(P) = P =⇒ σ(P) = τ(P) , so the points

Q1 , P , σ(P) , Q2 are collinear. In particular, P must lie on the line joining Q1 , Q2 ,

namely the x-axis.

To locate the fixed points of στ , we consider each inversion as acting on the x-axis, and

write σ(x) = 1

x , τ(x) = 3− 1

3−x . Solving σ(x) = τ(x) gives us
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Solving this quadratic, we find that there are two fixed points on the x-axis,
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5. Repeat Q4, but with C2 the circle of radius 1 centered at the point (2 , 0) .

The argument showing that all fixed points of τσ lie on the x-axis is almost identical, the

only difference being that this time the circles C1 , C2 meet at the point (1 , 0) . However,

this point does lie on the x-axis, so the conclusion is unaltered.

We locate the fixed point(s) of τσ similarly. The inversion σ is as in Question 4, and we

have τ(x) = 2− 1

2−x . The equation to solve is
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but this time there is a repeated root x = 1 . We deduce that the only fixed point of τσ

is (1 , 0) .


