Math 460 Test 3 Friday July 1

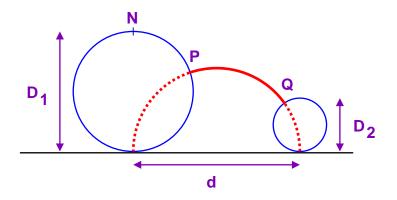
Show your working!

1. Let ρ be the rotation of \mathbb{R}^2 given by

$$\rho\left(\left[\begin{array}{c}x\\y\end{array}\right]\right) = \left[\begin{array}{c}\frac{x}{\sqrt{2}} - \frac{y}{\sqrt{2}} - 3\\\frac{x}{\sqrt{2}} + \frac{y}{\sqrt{2}} + 4\end{array}\right].$$

Find the center and angle of the rotation ρ .

2. Let C_1 be the circle of radius 2 centered at (-3, 0), and let C_2 be the circle of radius 2 centered at the point (3, 0). Let σ , τ be inversions in the circles C_1 , C_2 respectively. **(i)** Express each of σ , τ in the form $z \mapsto \frac{a\overline{z} + b}{c\overline{z} + d}$, and find expressions for $\sigma\tau(z)$, $\tau\sigma(z)$. **(ii)** Determine the fixed points P, Q of $\sigma\tau$. Explain briefly why P, Q are also the fixed points of $\tau\sigma$.



3. It is very important in this question to give adequate explanation for your results. The diagram illustrates horocycles whose centers lie on the *x*-axis, Euclidean distance *d* apart, and whose Euclidean diameters are D_1 , D_2 respectively. Also illustrated is a hyperbolic geodesic joining the centers of the two horocycles.

(i) Find the hyperbolic distance between the points P, Q where the geodesic meets the horocycles.

(ii) Find the hyperbolic length of the path along the horocycle of diameter D_1 from its "north pole" N to the point P.