Math 504, Lecture 3, Spring 2004

Sets theory, boolean algebras, and relations

1) Introduction to Sets

a) History and Philosophy

i) Informally a set is a collection of objects. It turns out that this informal definition leads to paradoxes if one tries to consider sufficiently pathological sets. For example let S be the set of all sets that do not contain themselves. Then does S contain itself? Ernst Zermelo (German, 1871–1953) seems to have been the first to report on such paradoxes in 1901 or 1902, but Bertrand Russell (1872–1970) is more famous for his work on them. In particular he is known for Russell’s Paradox: The barber in a town cuts the hair of only those men who do not cut their own hair. Does he cut his own hair?

ii) Zermelo and Abraham Fraenkel (1891–1965) proposed formal axioms for set theory that are now widely accepted. This is known as Zermelo-Fraenkel set theory. In practice, however, as long as we are not working with pathological cases there is no difference between the informal set theory that results from saying, “a set is a collection of objects” (this is known as naïve set theory) and formal Zermelo-Fraenkel set theory.

iii) Thus in practice mathematicians almost invariably work in naïve set theory. This is the set theory we will study

b) Set basics

i) A set, then, is a collection of objects without order or repetition. That is, one cannot discuss where an object is in the set or how many times it is in the set. It is either in the set or not, and that ends the discussion.

ii) We typically denote sets by capital letters. We define them by listing or describing their elements within braces. For instance we can define a set S having elements 1, 2, and 3 by S={1,2,3}. We can define T to be the set of whole numbers by writing T={0,1,2,…}. We can define the set Q of squares of whole numbers in various ways: Q={0,1,4,9,…} or Q={0,1,4,9,…,n2,…} or Q={x: x is the square of a whole number} or Q={x2: x is a whole number}. The last two ways of defining Q use set-builder notation. That is, they define the set using the form {x : x has some property or properties}. Some mathematicians use a vertical bar | instead of a colon : in set-builder notation. Both symbols are read “such that.” For instance the set listed above, {x2: x is a whole number} is read, “the set of x2 such that x is a whole number.”

iii) The most basic question one can ask about a set S is whether an object s is in it. If so, we say “s is an element of S” and write s ∈ S. If not, we say, “s is not an element of S” and write s ∉ S. For instance 1 ∈ {1,2,3} and 4 ∉ {1,2,3}. There is a set with no elements. It is called the empty set and denoted {} or ∅.

iv) Sets S and T are equal, and we write S=T, if S and T have the same elements. If every element of S is in T, we say S is a subset of T and we write S ⊆ T. If S is a subset of T and S ≠ T, then we say S is a proper subset of T and write S ⊂ T. (compare the symbol ⊆ to ≤ and the symbol ⊂ to <). In practice we seldom need to speak of proper subsets. Given these definitions it is easy to prove that two sets S and T are equal if and only if S ⊆ T and T ⊆ S. This is often the easiest way to prove equality of two sets (the alternative is to show the defining properties of S and T are logically equivalent). Note that the proposition S ⊆ T means (x ∈ S) → (x ∈ T) is true for all x.

v) Thus we can write {1,2,3}={2,1,3}={2,1,1,3,3,3,1,2} (since the order of listing and the apparent repetitions are meaningless). It is also the case that {1,2} ⊆ {1,2,3} and {1,2} ⊂ {1,2,3} and {1,2,3} ⊆ {1,2,3}. On the other hand{1,2,3} ⊄ {1,2,3}. The empty set is a subset of every other set. That is, if S is a set, then ∅ ⊆ S. Why? The proposition (x ∈ ∅) → (x ∈ S) is always true because x ∈ ∅ is always false (since nothing is in the empty set).

vi) The cardinality of a finite set S is the number of objects in S. We denote it by |S|. (Yes, this looks like absolute value. In some sense it indicates the magnitude of a set just as absolute value indicates magnitude of a number.) Thus |{a,b,c}|=3 and | ∅ |=0. Sometimes cardinality can be a little subtle. For instance |{a, b, {c,d} }|=3 since the set contains three objects: the letter a, the letter b, and the set {c,d}. Similarly | { ∅,{∅}} |=2 since this set contains two objects: the empty set and the set containing the empty set.

vii) Note the difference between being an element of a set and being a subset of a set. To be an element means to be an object in the set. To be a subset means to be a set containing objects in the other set. Thus 1∈{1,2} and {1}⊆{1,2}, but 1⊄{1,2} and {1}∉{1,2}. Also ∅⊂S is true for every set S, but ∅∈S is true only if S happens to contain the empty set as an element, which is plausible but does not happen often (except in problems 20–30 in section 2.1). It is possible to be an element and a subset of a set simultaneously, but you may never have thought of such sets. For instance {1,2}∈{1,2,{1,2}} and {1,2}⊆{1,2,{1,2}}.

viii) In a given mathematical context there is always an agreed up collection of all objects under discussion. In algebra I and II and in calculus this collection is normally the real numbers. In precalculus, when one is studying the imaginary numbers, this collection is the complex numbers. In number theory this set is the whole numbers or the integers. In financial calculations this is the set of all rational numbers with two decimal digits. This agreed-upon background set is called the universal set for the discussion at hand. Despite the name there is no absolute universal set that applies to all situations. The universal set is always relative to the topic under discussion and thus may change from one discussion to the next.

2) Operations on Sets

a) Just as we defined propositions and operators on them, deriving an algebra of propositions, now we are defining sets and operators on them, deriving an algebra of sets. Keep an eye out for the similarities between the set algebra and the propositional algebra. In section 2.4 we will see that they are both examples of a Boolean Algebra.

b) The intersection of sets S and T is S∩T={x: (x ∈ S) ∨ (x ∈ T)}. Thus we have, for example {1,2,3} ∩ {1,3,5} = {1,3} and {1,3,5} ∩ {2,4,6} = ∅. The union of sets S and T is S∪T={x: (x ∈ S) ∧ (x ∈ T)}. Thus we have, for example {1,2,3}∧{1,3,5}={1,2,3,5} and {1,3,5}∩{2,4,6}={1,2,3,4,5,6}.

c) Intersection is associative, so there is no ambiguity in writing R ∩ S ∩ T, which is the set of all objects common to all three sets. Similarly there is no ambiguity in writing R ∪ S ∪ T, the set of all objects in at least one of the three sets. These notions extend to larger numbers of sets as well. For instance the intersection of 100 sets A1, A2,…,A100 would be the set of elements common to all 100 of the sets. As a shorthand, one can write this intersection 
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. Infinite intersections are possible as well. Analogous statements apply to unions.

d) The complement of a set S is the set S′ ={x : x ∉ S}. Of course this definition makes sense only if we know what universal set is in the background. If U is the universal set, then we can more clearly define S′ ={x : (x ∈ U) ∨ (x ∉ S)}. For instance if we are working with counting numbers and S={1,3,5,…}, then S′={2,4,6,…}.

e) Given sets S and T, we define the set difference by S−T={x : (x ∈ S) ∨ (x ∉ T)}. For example, {1,2,3}−{1,3}={2}. We define the symmetric difference of S and T by S∆T=(S−T)∪(T−S). That is, the symmetric difference contains all elements in S or T but not both (compare this to exclusive or). For instance {1,2,3}∆{1,3,5}={2,4}.

f) Theorems 2.12, 2.13, and 2.14 on pp. 56–57 present some basic set identities together with proofs.  These are excellent examples of proving set equality by showing the sets have logically equivalent defining properties. Study them carefully. The general rule is to translate intersection to conjunction, union to disjunction, complementation to negation, apply logical equivalence and then convert back to intersection, union, and complementation.

g) The power set P(S) (this is supposed to be a kind of script P, but I do not have the symbol on my computer) is the set of all subsets of  S. Thus P({1,2})={∅,{1},{2},{1,2}} and P(∅)={∅}. If a set has n elements, its power set has 2n elements.

h) The Cartesian product of sets S and T is S×T={(s,t) : (s ∈ S) ∨ (t ∈ T)}. That is, it is the set of all ordered pairs whose first element comes from S and whose second comes from T. For example {1,2,3}×{a,b}={(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}. Thus the Cartesian plane of analytic geometry is simply ℝ×ℝ , where ℝ is the set of real numbers.

3) Venn Diagrams

a) Venn diagrams are a useful tool for visualizing relationships involving one, two, or three sets. (There are schemes for representing four or five sets, but they are not commonly used.) Generally speaking one draws a rectangle to represent the universal set and overlapping circles for each of the sets under consideration. Then one shades the appropriate sections to indicate the results of the set operations. The result is not a proof (despite what the book says), but it may make clear why an equality or other relationship is true (and point the way for a proof).

i) Examples

ii) A′

iii) A ∩ B 

iv) A−B

v) A ∩ (B ∪ C) Here we will shade A with lines and then B ∪ C in gray. The overlap will be the intersection we want.

vi) The book does a nice job of illustrating how use Venn diagrams. For instance example 2.19 on p. 64 shows that shading A ∩ (B ∪ C) leaves the same section shaded as (A ∩ B) ∪ (A ∩ C). Although this is not a proof, properly speaking, it helps one see why the sets are equal.

vii) Theorem 2.20 on p. 65 gives a number of set identities. If you replace intersection with conjunction, union with disjunction, complementation with negation, ∅ with F, U with T and equality with logical equivalence you will see a familiar list of logical equivalences.

4) Boolean Algebras

a) We have seen that algebra of propositional logic and the algebra of sets are somehow similar (the formal term is isomorphic, though we have not proved isomorphism). It turns out that both systems are examples of an algebraic structure called a Boolean algebra (after George Boole, 1815−1864, of England).

b) A Boolean algebra is a quadruple (B,+,∙,′) in which B is a set, + and ∙ are binary operators on B, and ′ is a unary operator on B. It is natural (and acceptable) to refer to + as plus and ∙ as times, but remember that they do not stand for normal addition and multiplication. If x ∈ B, we call x′ the complement of x. To be a Boolean algebra this quadruple must satisfy the following axioms. In each case x, y, and z are elements of B.

i) Both binary operators are commutative. That is x+y=y+x and x∙y=y∙x.

ii) Both binary operators are associative. That is x+(y+z)=(x+y)+z and x∙(y∙z)=(x∙y)∙z.

iii) Each binary operator distributes over the other. That is x∙(y+z)=(x∙y)+(x∙z) and x+(y ∙ z)=(x+y) ∙ (x+z).

iv) There are an additive identity and a multiplicative identity. That is, there are elements 0,1 ∈ B such that for all x,y∈B we have x+0=x and y∙1=y. (Note that although we use the symbols 0 and 1, they may not represent the integers 0 and 1. For instance in the Boolean algebra of sets 0 will be the empty set and 1 will be the universal set.)

v) Applying the operator ′ to an element yields and element which, added to the original element produces the multiplicative identity and multiplied by the original element produces the additive identity. That is x+x′=1 and x∙x′=0.

c) To simplify notation we often drop the ∙ and write variables next to each other to indicate times. That is, we write xy instead of x∙y.

d) Many of these axioms are similar to the ring axioms and, in particular, the axioms of the field of real numbers. A few, however, are new. For instance among the real numbers multiplication distributes over addition but not vice versa and adding the multiplicative inverse of a number to itself does not produce the additive inverse (i.e., 2+½ = 5/2, not 1).

e) We will not prove it, but if B is the set of propositions, then (B,∨,∧,~) is a Boolean algebra (with additive identity F and multiplicative identity T) and if U is a universal set then (P(U),∪,∩,′) is a Boolean algebra (with additive identity ∅ and multiplicative identity U). Notice, for instance, how (P(U),∪,∩,′) satisfies each of the axioms of a Boolean algebra:

i) Union and intersection commute: S∪T=T∪S and S∩T= T∩S.

ii) Union and intersection associate.

iii) Union distributes over intersection and vice versa.

iv) S∪∅=S and S∩U=S for all S⊆U

v) S∪S′=U and S∩S′=∅ for all S⊆U.

f) Theorems 2.24, 2.25, and 2.26 give a number of algebraic results with formal proofs. These are quite similar to some of the proofs you probably faced in your abstract algebra course, so I will not belabor them. The book lays them out in great detail. Note, however, that since the algebra of propositions and the algebra of sets are both Boolean algebras, every theorem about Boolean algebras is also one about propositions and sets. For instance Theorem 2.26c gives DeMorgan’s laws, which explains why they hold both in logic and in set theory. Again, Theorem 2.27 tells us that S∪T=T if and only if S∩T=S.

g) To get the dual of an expression or proposition in a Boolean algebra, you replace every + by ∙, every ∙ by +, every 0 by 1, and every 1 by 0. For instance the dual of x+x′=1 is x∙x′=0. Note that every axiom of Boolean algebras has two statements, each of which is the dual of the other. Thus given a theorem about Boolean algebras, we know the dual of the theorem is also true. (Why? Replace every step in the proof with its dual. Since these ultimately depend on the axioms, every dual is true as well.)

5) Relations

a) Let A and B be sets. A relation R on A and B is simply a subset of A×B. That is R⊆A×B. If B is the same set as A, then R is a relation on A; that is R⊆A×A. If (a,b) is in R, we say “a is related to b” and write aRb.

b) Examples

i) Let A be the set of people living in the U.S. and B be the set of zip codes. Define R⊆A×B by R={(a,b) : person a receives mail at zip code b}. So, for instance, (Reid Davis, 37996) ∈ R and (Reid Davis, 37922) ∈ R. More simply we write (Reid Davis)R37996 and (Reid Davis)R37922. With this relation Reid Davis is related to 37996 and to 37922.

ii) Let A be the set of people living in the world. Define a relation R on A by R={(a,b) : a and b have the same parents}. Then (George W. Bush)R(Jeb Bush). On the other hand Reid Davis is not related to anyone by R since he is an only child.

iii) Define a relation R on ℤ, the set of integers, by R={(a,b) : a2=b2}. Then 1R1, 2R2, and –2R2, for instance.

iv) Define a relation ≤ on ℝ, the set of real numbers, by ≤={(a,b) : a is less than or equal to b}. Then ≤ is in fact the familiar “less than or equal” relation on ℝ. For instance 2≤4 and 1.1≤96. (You can also write (2,4)∈≤  and (1.1,96)∈≤, but it looks weird).

v) Not surprisingly, = is also a relation on ℝ.

vi) Let A={1,2,3} and B={4,5,6}. Then we can define a relation R on A and B by R={(1,4),(1,5),(2,4),(2,6)}. Then 1R4 and 2R4 for instance. This relation is abstract, having no obvious meaning. We can construct such abstract relations with whatever properties we need.

c) If R is a relation on A and B, then we can define the domain and range of R. Namely, the domain of R is the subset of A that appears as first elements in R, and the range of R is the subset of B that appears as second elements in R. That is, a is in the domain of R is (a,b)∈R for some b in B, and b is in the range of  R if (a,b)∈R for some a in A.

d) If R is a relation on A and B, the we can define the inverse relation R−1 on B and A by R−1={(b,a) : (a,b)∈R}. In other words, the inverse relation simply turns around the relations in R. If aRb, then bR−1a.

e) If R is a relation on A and B, and S is a relation on B and C. then we can define the composition of S with R by S◦R={(a,c) : there exist a∈A, b∈B, and c∈C such that (a,b)∈R and (b,c)∈S}. That is aS◦Rc if and only if there exist a, b, and c with aRb and bSc. For instance, let A={1,2,3}, B={4,5}, and C={6,7,8,9}. Define a relation R on A and B by R={(1,4),(3,5)}. Define a relation S on B and C by S={(4,6),(4,7),(5,9)}. Then S◦R is a relation on A and C, and we have, for instance, 1S◦R7 since 1R4 and 4R7. On the other hand 1 is not related to 9 since there is no b with 1Rb and bR9. Altogether S◦R={(1,6),(1,7),(3,9)}. Theorem 2.34 tells us that composition is associative.

f) Relations turn out to be an important topic in many areas of mathematics. For instance, later we will learn that functions are a special kind of relation. One of the most interesting topics associated with relations on a set A is special properties they might have. Here are some of the most common.

i) Reflexivity: A relation R on A is reflexive if aRa for every a∈A. That is, everything is related to itself.

ii) Antireflexivity: A relation R on A is antireflexive (the term irreflexive is more common) if for all a∈A a is not related to a. That is (a,a)∉R; nothing is related to itself.

iii) Symmetry: A relation R on A is symmetric if for all a,b∈A it holds that aRb implies bRa. That is, elements related in one order are related in the other.

iv) Antisymmetry: A relation on A is antisymmetric if, for all a,b,∈A it holds that aRb and bRa implies a=b. What this says is that elements related in one order are never related in the other order, except that an element is allowed to be related to itself (which necessarily happens in both orders).

v) Transitivity: A relation on A is transitive if for all a,b,c∈A, it holds that if aRb and bRc, then aRc.

vi) Examples

(1) Here is a relation that possesses none of these properties. Let A={1,2,3} and define a relation R on A by R={(1,1),(1,2),(2,1),(2,3)}. It is not reflexive because, for instance (2,2)∉R. It is not antireflexive because (1,1)∈R. It is not symmetric because (2,3)∈R but (3,2)∉R. It is not antisymmetric because (1,2),(2,1)∈R but 1≠2. It is not transitive because (1,2),(2,3)∈R but (1,3)∉R.

(2) The relation ≤ on ℝ is reflexive, antisymmetric, and transitive: For all a∈R we have a≤a, so R is reflexive. For all a,b∈ℝ, if a≤b and b≤a, then a=b, so R is antisymmetric. For all a,b,c ∈ ℝ, if a≤b and b≤c, then a≤c, so R is symmetric.

(3) Define a relation R on A={1,2,3} by R={(1,2),(2,1)}. Then R is symmetric (since for every (a,b)∈R it holds that (b,a)∈R) and antireflexive (since no element of R is related to itself). It is not reflexive since, for instance (1,1)∉R. It is not antisymmetric since (1,2),(2,1)∈R but 1≠2. It is not transitive since (1,2),(2,1)∈R but (1,1)∉R. (This is a little subtle. In the definition of transitivity we are using a=1, b=2, c=1.)

(4) Define a relation R on A={1,2,3} by R={(1,1),(2,2),(3,3)}. Then R is reflexive, symmetric, antisymmetric, and transitive (is that clear?). It is not antireflexive.

vii) Definition 2.39 on p. 75 defines the reflexive, symmetric, and transitive closures of a relation. Very simply, the reflexive closure of R is the smallest reflexive relation containing R (similarly for the other closures). Transitive closures are a difficult topic, and the treatment in the book does not do them justice. We will not pursue them.

viii) It is easy to find a reflexive closure. Just add any missing pairs of the form (a,a) into R. It is also easy to find a symmetric closure. Just find every pair (a,b) in R and put (b,a) in R. Theorem 2.40 gives both these rules using slicker notation.

6) Graphs and Relations

a) Formally, a graph G consists of a vertex set V and an edge set E. The vertex set is simply a set. The edge set contains sets of the form {a,b} where a,b∈V and a≠b. (Note that some authors allow a=b, forming a loop in the graph, an edge connecting a vertex with itself). This is an edge that joins a and b. We draw graphs by writing dots for the vertices in V and connecting vertices a and b with a curve if {a,b}∈E.

b) For example. Let V={1,2,3,4} and E={{1,2},{1,3},{3,4}}. We draw the graph G(V,E) as follows:


c) Given a graph G(V,E), we can define an antireflexive, symmetric relation R on G by defining R={(a,b) : {a,b}∈E}. In the example above, R={(1,2),(2,1),(1,3),(3,1),(3,4),(4,3)}. We say the graph defines this relation and, conversely, the graph is the graph of the relation.

d) A directed graph (digraph, for short) is similar to a graph except that the edges are ordered pairs, represented by curves with arrows. That is, a digraph consists of a vertex set V and an edge set E containing ordered pairs of the form (a,b), where a,b∈V. In this case it is allowable for a and b to be equal (thus an edge can be a loop from a vertex to itself). If G(V,E) is a digraph, then E is literally a relation on V since it is a subset of E×E. We call G the digraph of the relation E. 

e) For example, let V={1,2,3,4} and E={(1,2),(1,3),(3,1),(3,4),(4,4)}. We draw the digraph G (or the digraph of the relation E) as follows.

f) It is easy to draw the graph of a relation and easy to reconstruct the relationfrom the graph. Also, properties like reflexivity and symmetry are easy to spot in the digraph of the relation. A reflexive relation, for instance, has a loop at each vertex. In a symmetric relation two vertices with an arrow between them have an arrow in the other direction as well. Thus it is natural to use digraphs in studying relations and vice versa.
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