Math 504, Lecture 9, Spring 2004

more graph theory and number theory

1) Eulerian Cycles (6.5)

a) Graph theorists identify two special sorts of cycles in a graph. A Hamiltonian cycle (or circuit) is a cycle that includes every vertex in the graph. An Eulerian cycle (or circuit) is a cycle that includes every edge in the graph. Our text addresses only Eulerian cycles.

b) The big question about Eulerian cycles is which graphs have them. Obviously graphs with Eulerian cycles must be connected. Also since an Eulerian cycle must exit each vertex the same number of times it enters it (and must use no edge twice), then the vertices in a graph with an Eulerian cycle must all have even degree. Surprisingly, these two necessary conditions are also sufficient: a graph has an Eulerian cycle if and only if it is connected and all vertices have even degree. See the book for a proof.

c) Example: Which of the following graphs has an Eulerian cycle? Give one of its cycles.

d) The classical application of this theorem is to show that in the Königberg Bridge Problem (which we saw in section 6.1) there is no way to traverse the seven bridges of Königsberg without crossing at least one twice. Our book notes that this is actually a problem about multigraphs, but the theorem holds for multigraphs as well.

e) An Eulerian path is a path that includes all the edges of a graph (so it is an Eulerian cycle if the initial and terminal vertices are the same – otherwise it is a proper Eulerian path). A graph has a proper Eulerian path if and only if it is connected and it has exactly two vertices with odd degree. The reasoning is similar to that that in the theorem for Eulerian cycles.

f) Example: The following graph has an Eulerian path. See if you can find one.

g) You may safely ignore the results about Eulerian cycles in digraphs.

2) Studying Graphs with Matrices (6.6)

a) The book introduces two matrices associated with a graph or digraph. These are the incidence matrix and the adjacency matrix. The incidence matrix will interest us little, but the adjacency matrix will prove rather useful to us.

b) The incidence matrix of a graph has one row for each vertex of the graph and one column for each edge. Label each row with the name of a vertex and each column with the name of an edge. If vertex i is incident with edge j, then place a one at the intersection of row i and column j. Fill all other positions with zeroes.

c) Example: Here is a graph. Vertices are labeled with letters and edges with numbers. Try to give its incidence matrix.

d) Every column in an incidence matrix has two one’s. (Why?). The sum of each row is the degree of the corresponding vertex. (Why?) You can reconstruct a graph from its incidence matrix, but you cannot do so for a digraph. (Why?)

e) The adjacency matrix of a graph or digraph with n vertices is n×n, with each row and each column labeled for one of the vertices. Place a one at the intersection of row i and column j if vertices i and j are adjacent (for a digraph do it if there is an edge from vertex i to vertex j). Place zeroes in the other locations.

f) Example: Construct the adjacency matrix for the graph below. Note that we do not need edge labels this time.

g) It is straightforward but tedious to show that the Boolean powers of the adjacency matrix indicate the existence of paths of various lengths within a graph. That is, if graph G has adjacency matrix A, then its kth Boolean power has a one at the intersection of the ith row and jth column if and only if there is a path of length exactly k from vertex i to vertex j. If G is a digraph, then the paths shown by Boolean powers of the adjacency matrix are directed paths.

h) Example: Compute the Boolean square, cube, and fourth powers of the adjacency matrix in the example above and note which vertices can be reach from others by paths of various lengths. Will some power of the matrix consist of all ones?

i) Suppose that a relation R has digraph G with adjacency matrix A. Then R is transitive if and only if A equals its Boolean square. Construct a transitive relation, find its adjacency matrix, and then note how it equals its Boolean square.

j) Suppose that a relation R has digraph G with n vertices and adjacency matrix A. By joining (∨) A with its second Boolean power, third Boolean power, and so on through the nth Boolean power, we get the transitive closure of R, the smallest transitive relation containing R.

k) Try constructing the transitive closure of the relation R={(a,b),(b,a),(b,b),(b,c),(b,d)} on the set {a,b,c,d}.

l) Ignore the remainder of section 6.6, starting with Theorem 6.67. Its focus is a procedure called Warshall’s algorithm, a method for computing transitive closures that is much more efficient than what we have just seen.

3) Determining Whether a Number is Prime

a) Sieve of Eratosthenes (7.1)

i) As we have seen before, if n is a composite number, then its smallest factor greater than one is prime. It is also no larger than the square root of n. (Why? If all the factors are bigger than the square root of n, then the product of every pair of them is bigger than n, which is impossible.) Thus we can test an integer n greater than one for primeness by dividing n by every prime less than or equal to its square root. If none of them divide n evenly, then n is prime. Otherwise it is composite. This test is the Sieve of Eratosthenes.

ii) One can use the Sieve of Eratosthenes to test many numbers at once. The book illustrates this nicely on pages 271—272, finding all the primes up to 100. This application explains the term sieve. We dump all the numbers into the sieve, and all the composites fall out, leaving only primes (think of panning for gold). Eratosthenes of Cyrene (276—194 BC) is credited with the discovery of this method of finding primes. You may recall that Eratosthenes is best known for his excellent estimate of the circumference of the earth. Until the advent of computers, sieve methods like that of Eratosthenes were the best weapon in the mathematical arsenal for constructing tables of prime numbers. They remain an important tool in number theory (or so I am told).

b) Fermat’s Method (7.2)

i) Fermat’s method is another old tool for factoring positive integers and determining whether they are prime. It grows out of a simple theorem, unfamiliar to many of us, that odd integers greater than one are composite if and only if they can be written as the difference of squares that differ by more than one. That is, odd n>1 is composite if and only if there exist positive integers p and q, with p–q>1 and n=p2​–q2.

ii) The proof is simple. If n=p2​–q2, then n=(p+q)(p–q) and neither of these factors equals one. On the other hand if n=rs with neither r nor s equal one, then n=p2​–q2, where p=((r+s)/2)2 and q=((r–s)/2)2 (just do the algebra).

iii) Rearranging this equation we get a method for factoring odd positive integers. That is, if n=p2​–q2, then n+q2=p2. So if by adding a square to n we get a perfect square, then n is composite with factors p+q and p–q (as long as n<(n–1)/2, in which case p–q=1). Thus we add successive squares until we get a square or reach (n–1)/2.

iv) This is fairly simple with a calculator that finds square roots. In olden times it helped greatly to have a list of all the possible final digits of perfect squares (0, 1, 4, 5, 6, 9). Even better was a list of the possible final two digits. It also helps to note that the differences between successive squares are the successive positive odd integers (4–1=3, 9–4=5, 16–9=7, etc.). Thus we can factor n=2867 as follows:

(1) 2867+1=2868 which has the wrong last digit to be a square

(2) previous result+3=2871 which we check and find is not a square

(3) previous result+5=2876 which we check and find is not a square

(4) previous result+7=2883 which has the wrong last digit to be a square

(5) previous result+9=2892 which has the wrong last digit to be a square

(6) previous result+11=2903 which has the wrong last digit to be a square

(7) previous result+13=2916=542.

(8) Thus 2867+72=542, so 2867=542–72=(54+7)(54–7)=(61)(47).

v) Please note the typo in the table on p. 273. The second column should be labeled n+q2 rather than n+qb2.

4) The Euclidean Algorithm for Finding the GCD (7.3)

a) The Euclidean algorithm is an algorithm for finding the greatest common divisor of two positive integers. It is, in fact, found in Euclid. Despite its age, it is astonishingly efficient. More than being just a computational tool, it leads to useful theoretical results as well.

b) The procedure is simple though I have found it hard to remember over the years. To find gcd(a,b), divide a by b and find the remainder. Then divide b by the remainder to get a second remainder. Next divide the first remainder by the second remainder to get a third remainder. Continue dividing each remainder by the next one until you get a remainder of zero. The last positive remainder is the gcd.

c) Example: Find gcd(1403,1081).

i) 1403=1081∙1+322

ii) 1081=322∙3+115

iii) 322=115∙2+92

iv) 115=92∙1+23

v) 92=23∙4+0

vi) The last nonzero remainder is 23, so gcd(1403,1081)=23.

d) Note how simple this procedure is and how much easier than trying to find the prime factorization of 1403 and 1081.

e) Why does this work? If a=bq+r, then the divisors of a and b also divide r since r=a–bq. Also the divisors of b and r divide a since a=bq+r. Thus gcd(a,b)=gcd(b,r). Similarly the gcd of the first and second remainders equals gcd(a,b), and so on for each pair of successive remainders. In particular the last pair has the form gcd(last positive remainder,0), which is just the last positive remainder. The book proves why this process always terminates (why we always get a remainder of zero at some point).

f) You may recall that the Chinese had a method for executing the Euclidean algorithm (presumably without knowing of Euclid) using a counting board. It shows up in the solution of systems of linear congruences by Qin Jiushao (1202–1261 AD). You will find it on page 201 of our math history text (Victor Katz) from last year.

g) It is always possible to write gcd(a,b) as a linear combination of a and b. That is, there exist integers x and y such that gcd(a,b)=ax+by (x or y may be negative). In fact, though we have not proved it, gcd(a,b) is the smallest positive linear combination of a and b. Once we use the Euclidean algorithm to find gcd(a,b) we can then retrace our steps to write gcd(a,b) in the form ax+by.

h) Example: Here is the work we did above to find gcd(1403,1081)=23. Read the second part of each line from bottom to top to write 23=1403x+1081y.

i) 1403=1081∙1+322, so 23=1081(3)+(1403–1081∙1)(–10)=1403(–10)+1081(13)
ii) 1081=322∙3+115, so 23=322(–1)+(1081–322∙3)(3)=1081(3)+322(–10)

iii) 322=115∙2+92, so 23=115–(322–115∙2)(–1)=322(–1)+115(3)

iv) 115=92∙1+23, so 23=115+92(–1)

i) You can ignore the rest of the section except to note that the Euclidean algorithm makes it easy to find lcm(a,b), since lcm(a,b)=ab/gcd(a,b). If you are interested, the main result in the remainder involves the efficiency of the Euclidean algorithm, showing that the maximum number of steps in finding gcd(a,b) grows no faster than the logarithm of b. I recall once seeing a proof that the number of steps never exceeds three times the number of decimal digits in b (which we take to be the smaller than a). Of course it is usually even smaller.

e

d

c

b

a

6

5

4

3

2

1

e

d

c

b

a

e

d

c

b

a

f

a

b

c

d

e

e

d

c

b

a

