Math 507, Lecture 2, Fall 2003, Fancy Counting (1.8–1.12)

1) Counting Subsets (Binomial Coefficients)

a) Counting all subsets

i) Notation: We denote the set of all subsets of a set A by 
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. For example, 
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. Many books use the notation 
[image: image3.wmf])

(

A

P

 (usually with script P) or #(A).

ii) Theorem: A set with n elements has 
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subsets. A brief way of saying this is that if the set A is finite, then 
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. Proof: Let 
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. Then to form a subset of A perform n different tasks. First decide whether to include 1 in the subset (there are 2 choices). Then decide whether to include 2 in the subset (2 choices). Continue in this way for each of the n elements of A. By the multiplication rule, there are 
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ways to form a subset.

iii) Example: 
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iv) Example: If a pizza parlor offers eight toppings, then you have 
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 ways to top a pizza, not allowing repeated toppings.

b) Counting subsets of a fixed size

i) Definition: We define 
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 to be the number of k-subsets of an n-set for nonnegative integers n and k. We call this number the k-th binomial coefficient of order n (for reasons that will soon appear). Note that this does not yet give us a formula for computing binomial coefficients.

ii) Examples: Certain values are easy to find without a formula

(1) Clearly 
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 for all n, since the first term counts the empty set and the second counts the whole n-set itself.

(2) Similarly 
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 since the first term counts the ways to choose a single element (a 1-subset) and the second couns the ways to leave a single element out.

(3) By brute force we can count the 2-subsets of [4] , getting 
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. This demonstrates that 
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(4) If k exceeds n then 
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iii) Theorems

(1) Theorem 1.9: For all 
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it holds that 
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. Proof: Suppose we want to count the permutations of [n] taken k at a time. We might do this in two different ways. First we already know the answer is 
[image: image18.wmf]k

n

. Second we might choose k elements from [n] to be in the permutation and then we might arrange those k elements in some order. There are 
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 ways to do the first task and k! ways to do the second. By the multiplication rule there are 
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 ways to do the whole job. Since these two approaches both count the permutations of [n] taken k at a time they must be equal. Thus 
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. Dividing both sides of the equation by k! yields the desired result.

(2) Notes to theorem 1.9

(a) Recall that 0!=1.

(b) This is an example of a combinatorial proof. That is, it proves equality of two formulas by showing they count the same quantity. Combinatorial proofs are often far simpler and more intuitive than algebraic proofs of the same results.

(c) Multiplying the numerator and denominator of the formula in Theorem 1.9 by (n-k)! yields the familiar formula 
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. The last formula has the disadvantage, however, that it fails when k exceeds n.

(d) Many books call 
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 the number of combinations of n things taken k at a time. AVOID THIS TERMINOLOGY! A combination simply means a subset, but the term combination is much more confusing than the simple term subset. Explain that 
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(e) Example: Suppose you want to buy a three-topping pizza at a pizza parlor that offers 15 toppings. If repeated toppings are not allowed, how many different pizzas can you order? You simply want a 3-subset of the 15-set of toppings. Thus there are 
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 possible three-topping pizzas.

(f) Tabulating the values of the binomial coefficients produces Pascal’s Triangle (see p. 12 in the book).

(3) Theorem 1.10: 
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for integers 
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. Proof: Combinatorially this is obvious because each way to choose a k-subset also excludes the remaining (n-k)-subset. Algebraically it is also trivial.

(4) Theorem 1.11:  For 
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 the recurrence 
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. Proof: (We prove only the recurrence, the rest being obvious.) Count the k-subsets of [n] according to whether they contain the number n. If so, then the remaining elements form a (k-1)-subset of [n-1]. If not, then the remaining elements form a k-subset of [n-1]. By the addition rule the result follows.

(5) Note to Theorem 1.11: This recurrence relation gives the standard rule for constructing Pascal’s triangle — namely, each entry is the sum of the two entries “above” it. In the tabular arrangement in the book, this means the sum of the entry directly above with the entry above and to the left.

(6) Theorem 1.12: For all  nonnegative integers n, 
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. Proof: Both sides of the equation count the subsets of [n], the left-hand side (LHS) according to the size of the subset.

(7) Theorem 1.13: For positive integers n and k we have 
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. Proof: Suppose we need to appoint a committee of size k with chair from a group of n people. We might first choose the k people and then make one of them the chair. There are 
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such possibilities. Alternatively we might first appoint a chair and then fill in the remaining k-1 positions on the committee from the remaining n-1 people. There are 
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 possibilities. Equate these two formulas and divide by k to get the desired result.

(8) Theorem 1.14 (Vandermonde’s Identity): For nonnegative integers m, n, and r we have 
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. Proof: This astonishing equation has a simple combinatorial proof. Suppose you have a group of m men and n women. Both sides of the equation count the number of ways to appoint a committee of r people from this group. The LHS does it by definition of binomial coefficient. The RHS does it according to the number, j, of men on the committee.

2) The Binomial Theorem

a) Purpose: The binomial theorem tells us what the results will be in multiplying out the expression 
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using the distributive property. Specifically it tells how what the various “like terms” will be and how many of each will appear (e.g., what the coefficient will be).

b) Explanation: Consider what happens in multiplying out 
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c) Further Explanation: Each factor in 
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contributes an x or a y to every word (term) in the final expansion. Since there are two choices (x or y) in each of three positions, by the multiplication rule we get 8 different words (terms) in the expansion. These are all the three-letter words on x and y. We then collect like terms by putting together terms with the same number of x’s and y’s. For instance, the term 
[image: image43.wmf]y

x

2

3

at the end indicates that it is possible to form three different three-letter words with two x’s and one y.

d) More Explanation: Now suppose we want to expand 
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. The terms will be all the nine-letter words on x and y, so when we collect like terms, the sum of the exponents in each term must be nine. How can we find the coefficient of, say, 
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? We must determine how many different nine-letter words have 7 x’s and 2 y’s. This turns out to be easy: Draw nine spaces and choose seven of them to receive x’s (or two to receive y’s). The number of ways to do this is 
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. Thus the simplified expansion has a term 
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e) Yet More Explanation: Thus 
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 (Note that you can reverse the order of the coefficients because of theorem 1.10. Similarly you can reverse the order of the terms while keeping the coefficients unchanged.)

f) The Binomial Theorem: 
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g) Consequences

i) The Binomial Theorem yields an alternative proof of Theorem 1.16. By setting 
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ii) Expanding 
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 we see that the sum of the binomial coefficients 
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 with k odd equals the sum of them with k even. Thus every set has the same number of odd and even subsets.

iii) Frequently in enumeration we want to use the Binomial Theorem “backwards” to express a complicated polynomial as some power of a binomial. The third, fourth, and fifth examples on p. 17 illustrate this technique nicely. The trick is to fiddle with the sum until it looks like a binomial expansion, perhaps with a term missing at the beginning or end.

3) Trinomial and Multinomial Coefficients

a) Example: Suppose we want to form nine-letter words comprising 4 x’s, 3 y’s, and 2 z’s. How many such words are there (words are different if they are visually distinct). Denote the number by 
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. Suppose for a moment that we distinguish the letters by attaching subscripts to them: 
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, etc. Now there are 9! different nine-letter words using these nine symbols. We can count them in another way, however: First choose the positions for the x’s, y’s, and z’s (without subscripts. There are 
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 ways to do this. Next there are 4! ways to assign subscripts to the x’s, 3! ways to do it for the y’s, and 2! ways to do it for the z’s. Thus 
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 Dividing yields 
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b) Definition: Given nonnegative integers 
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c) Theorem 1.17: Under these circumstances, the trinomial coefficient 
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 counts the number of words (sequences) of length n with 
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 x’s, 
[image: image64.wmf]2

n

 y’s, and 
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 z’s. Equivalently it counts the ways to distribute n labeled balls among three labeled urns such that the first gets 
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d) Theorem 1.18: For nonnegative n, the sum of all trinomial coefficients of order n is 
[image: image69.wmf]n

3

. That is, 
[image: image70.wmf]å

Î

=

+

+

=

÷

÷

ø

ö

ç

ç

è

æ

N

n

n

n

n

n

n

i

n

n

n

n

3

2

1

3

,

,

3

2

1

. Proof: Summing the trinomial coefficients counts every word of length n on x, y, and z. There are 
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e) Theorem 1.19 (The Trinomial Theorem): For nonnegative n we have 
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. Proof sketch: In expanding the nth power of the trinomial on the left, we get every word of length n on x, y, and z. Much as in the binomial case, the coefficient on a particular term is the number of words with the specified number of x’s, y’s, and z’s.

f) Example: In the expansion of 
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g) Note: There is a trinomial recurrence that produces a “Pascal’s Pyramid.”

h) Definition: We can generalize the notion of trinomial coefficients to multinomial coefficients 
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 sum to n. This coefficient counts the number of words on n letters in which one letter appears 
[image: image78.wmf]1

n

 times, another appears 
[image: image79.wmf]2

n

 times, etc. It also counts the ways to put n labeled balls in k labeled urns with specified occupancies (
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i) Example: The letters in the word TENNESSEE can be arranged in 
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 visually distinct ways.

j) Theorem 1.18 generalizes to multinomial coefficients. That is, the sum of all k-nomial coefficients of order n is 
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. Proof: Analogous to the trinomial case.

k) The Trinomial Theorem generalizes in the obvious fashion to produce a Multinomial theorem (Theorem 1.22).
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