MATH 507, LECTURE SIX, FALL 2003

DISCRETE RANDOM VARIABLES AND EXPECTED VALUE

1) Random Variables

a) Definitions

i) A random variable X is a function whose domain is the sample space of some experiment and whose range is a subset of the real numbers.

ii) The range is the set of values that can possible come out of X.

iii) A random variable is discrete if its range is finite or countably infinite. Countably infinite means (informally) that it is possible to make a list of the elements even though they are infinite. For instance, the set of positive even numbers is countably infinite: 2, 4, 6, 8,…. The set of positive numbers of no more than two decimal digits is countably infinite: 0.01, 0.02,…, 0.99, 1.00, 1.01, …. On the other hand, an interval like [0,1] is uncountably infinite; it is impossible to make a list – even an infinite list – of the real numbers between zero and one.

b)  Examples

i) Flip a coin three times and record the flips. Then S={hhh, hht, hth, thh, htt, tht, tth, ttt}. Define a function X on S by X(s)= “the # of heads in the three flips.” So X(hhh)=3, X(htt)=1, X(tht)=1, and X(ttt)=0. The range of the random variable X is {0, 1, 2, 3}. This is finite, so X is a discrete random variable.

ii) Roll a red die and a clear die and record the two rolls. So as we have often seen, S={(1,1), (1,2),…,(6,6)} with 36 elements. There are many random variables definable on S.

(1) Define X(r,c)=r+c. That is, X of a pair is the sum of the numbers. So X(1,5)=6 and X(6,6)=12. Then the range of X is {2,3,…,12} and X is discrete.

(2) Define Y(r,c)=max{r,c}. So Y(1,5)=5 and Y(6,6)=6. Then the range of Y is {1,2,3,4,5,6} and Y is discrete.

(3) Define Z(r,c)=r-c. So Z(1,5)=-4 and Z(6,6)=0. Then the range of Z is {-5, -4,…, 4, 5}, and Z is discrete.

(4) Define W(r,c)=r/c. So W(1,5)=1/5 and W(6,6)=6/6=1. Then the range of W is {1, 2, 3, 4, 5, 6, 1/2, 3/2, 5/2, 1/3, 2/3, 4/3, 5/3, ¼, ¾, 5/4, 1/5, 2/5, 3/5, 4/5, 6/5, 1/6, 5/6} and W is discrete.

iii) Flip a coin repeatedly until it shows heads. Record the flips in order. So S={h, th, tth, ttth, tttth,…}. Define a function X on S by X(s)=”the # of flips in the outcome s.” So X(h)=1, X(th)=2, and X(tttth)=5. Then the range of X is {1, 2, 3, 4, …}= “the set of positive integers.” This set is countably infinite, so X is a discrete random variable.

c) The concept of random variables is an artifice that works out extraordinarily well for the study of probability. It allows us to apply all our knowledge of functions to the study of probability. Also, it strips away real world differences to reveal situations that are probabilistically identical. For instance if X is the number of heads in three flips of a coin and Y is the number of girls in a family with three children, then X and Y are probabilistically identical (assuming the probability is ½ of each child being a girl) even though the physical situations they model are quite different.

d) Probability Density Functions (pdf)

i) Given a discrete random variable X with sample space S, there is an associated probability density function f defined by f(x) = P(X=x) = P({s in S | X(s)=x}). That is, the pdf tells us the probability of each particular value of f occurring. If x is not in the range of f, then f(x)=0. Some books call f the probability mass function. The sum of the values of f(x) for all x’s in the range of X must be 1 (obviously, right?). 

ii) Examples

(1) Flip a coin and record the result. Then S={h,t}. Define a random variable X on S by X(h)=1 and X(t)=0 (so X is the number of heads). The range of X is {0,1}. Then the pdf for S is given by f(0)=P(X=0)=P({t})=1/2 and f(1)=P(X=0)=P({h})=1/2.

(2) Flip a coin three times and record the results. Then S={hhh, hht, etc.} as we have seen before. Define X(s) to be the number of heads in the three flips. Then the range of X is {0,1,2,3}. The values of the pdf for this random variable are f(0)=1/8, f(1)=3/8, f(2)=3/8, f(3)=1/8. For instance, f(1)=P(X=1)=P({tth, tht, htt})=3/8.

iii) We can graph pdf’s usefully. For instance we can graph the pdf for flipping a coin three times using a “discrete density graph” or a histogram. We can also display them tabularly as in the table below the discrete density graph. 
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e) Cumulative Distribution Functions (cdf)

i) Every random variable X also has an associated cumulative distribution function defined on the real numbers by F(x) = P(X<=x). That is, F(x) is the “cumulative” probability that X takes on a value of x or less. It is not obvious, but the cdf of a random variable is extremely useful. Once you know the cdf, you can easily find almost any probability that interests you.

ii) Every cdf is an increasing function. Its limit at negative infinity (to the left) is 0 and its limit at positive infinity (to the right) is 1. If the random variable X is discrete, then the cdf is a step function. For example, here is the cdf for the random variable X that counts the heads in three coin flips. Note that it jumps at every value in the range of X. 
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2) Families of Random Variables

a) Formally a random variable is a real-valued function on a sample space. In practice we think of random variables as machines that generate numbers with particular probabilities. For instance in several examples above we have considered a random variable X that takes on the value 0, 1, 2, or 3 every time we look at it. It takes on the values 0 and 3 with probability 1/8 each. It takes on the values 1 and 2 with probability 3/8 each.

b) Certain types of random variables come up frequently. We call the types “families” of random variables. Common families of discrete random variables are binomial, geometric, hypergeometric, and Poisson random variables. Each family contains infinitely many members, differing from each other according to the value of one or two “parameters” characteristic of the family. An important part of learning probability theory is becoming familiar with these common families.

c) Binomial Random Variables.

i) Suppose you carry out n trials of the same experiment. Every repetition has one of two outcomes, either “success” or “failure.” The trials are independent of each other, and the probability of success is the same each time, namely p, for some value of p between 0 and 1 inclusive. We can define a random variable X to be the number of “successes” in these n trials. Then X is a binomial random variable with parameters n and p. We write X~binomial(n,p). In such cases it is common to define q=1-p. (So p is the probability of success and q is the probability of failure in each trial).

ii) For example, X might count the number of heads in 10 coin flips (n=10, p=.5) or the number of girls born from 5 pregnancies (n=5, p=.5) or the number of threes rolled on 20 dice (n=20, p=1/6), or the number of free throws shot in basketball in 100 attempts by a particular player (n=100, p= a value dependent on the player), or the number of defective light bulbs detected in a sample of 1000 off an assembly line (n=1000, p= a value dependent on the quality of the manufacturing process).

iii) If X~binomial(n,p), then it is easy to find the probability density function f associated with X. Namely, 
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 (this formula is worth memorizing). Why? The following example makes it clear. 

(1) Suppose a sack has 20 red beads and 80 green ones. If you draw six beads with replacement, what is the probability you get exactly two red ones? The sample space S consists of all six-letter words on r and g. That is, S={rrrrrr, rrrrrg, rrrrgr, …}. Define the random variable X to be the number of red beads in a particular selection of 6. For instance X(ggrgrg)=2. Then X~binomial(6,0.2). We wish to find f(2) = P(X=2). 

(2) Consider a particular word for which X=2, say ggrgrg. Since the draws are independent (with replacement), the probability of getting this word is 
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. Of course the probability of any other particular word with two r’s and four g’s is the same. If we add up this probability for every such word, we will get f(2). How many such words are there? Clearly the answer is C(6,2) (since we just have to choose which two of the six positions get r’s). Thus 
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. The same principle works in general to give us the pdf for binomial random variables.

iv) Example: A basketball player hits 70% of his free throws. What is the probability that he hits exactly 14 out of his next 20 free throws (assuming independence of the shots). We recognize that the number X of shots hit is binomial(20,.7). We want to know f(14). By the formula 
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v) It is an easy application of the binomial theorem to show that the sum of all the values of the pdf of a binomial random variable is 1, as it should be. The book shows this in formula 3.6 on page 57.

d) Geometric random variables

i) Once again imagine performing independent trials of an experiment in which the chance of success is p each time. Instead of counting successes, however, let X be the number of the trial on which the first success occurs (e.g., X=1 if the first trial is a success, X=3 if the first two are failures and the third a success). Then X is a geometric random variable with parameter p and we write X~geometric(p).

ii) If we label the two outcomes as f (for failure) and s (for success), then the sample space of this experiment is S={s, fs, ffs, fffs,…}. Clearly the probability that X=k is the probability of getting k-1 failures followed by a success. That is, the pdf is given by 
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iii) For example, suppose once again that a basketball player hits 70% of his free throws. What is the probability that if he starts shooting free throws, he gets his first basket on the fifth shot? Here we have a random variable X~geometric(.7) and we want to know f(5). By the formula 
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 -- not very likely!

iv) If X~geometric(p) and we sum all the values of f(k), we get an infinite series. It turns out, however, that it is a geometric series with sum 1, as it should be (see formula 3.8 in the book).

e) Hypergeometric Random Variables

i) Suppose you have a sack of N beads in which A are red and the rest green. If you draw n beads from the sack with replacement and count the number of red beads (successes), then you get a binomial(n,A/N) random variable (since p=A/N). If you follow the same procedure without replacement you get a hypergeometric(n,A,N) random variable. That is, X~ hypergeometric(n,A,N) counts the number of successes in n draws from a finite population of size N with a finite supply A of successes.

ii) If X~hypergeometric(n,A,N), it is easy to calculate the probability density function f(k). It is a problem we have done before: In a group of N people there are A men (and the rest women). If we appoint a committee from this group at random, what is the probability there are exactly k men on it? There are C(N,n) n-subsets of the group. There are C(A,k) k-subsets of the men and C(N-A,n-k) (n-k)-subsets of the women. Thus the probability of getting exactly k men on the committee is C(A,k)C(N-A,n-k)/C(N,n). This is f(k).

iii) Once again, if we add up all the values of f(k) we get 1, as we should. The book shows how to do this in equation 3.10 on page 60, invoking Vandermonde’s Theorem along the way.

iv) Example: Suppose a sack contains 70 red beads and 30 green ones. If we draw out 20 without replacement, what is the probability of getting exactly 70 green ones (compare this to the player shooting 14 baskets in 20 free throws). If X is the number of red beads, then X~hypergeometric(20,70,100). By the formula f(14)=C(70,14)C(30,6)/C(100,20)= 0.21 (approximately). Note that this is slightly higher than the result for the basketball player.

v) If the sample size, n, is much smaller than the population size, N, then the pdf of a hypergeometric(n,A,N) random variable is close approximation to that of a binomial(n,A/N) random variable. Since the binomial random variable is easier to work with, we will often use it in place of the hypergeometric under such circumstance. “Much smaller” is typically taken to mean that n should be no more than 5% of N. The point is that the probability of “success” changes a little from trial to trial in the hypergeometric random variable, but these values all stay close to p=A/N if the number of trials is small. Thus the pdf differs little from that of the binomial random variable.

3) Hypothesis Testing

a) One branch of statistics, inferential statistics, attempts to determine when data so badly contradicts hypotheses that one ought to drop the hypotheses. For instance, if I pull a coin from my pocket you will probably assume it is a fair coin (your hypothesis). If I then flip heads on it 100 times in a row, this data will probably persuade you that the coin is not fair after all. The key argument is that if your hypotheses (often called the null hypothesis) is correct, then your data represents an extraordinarily improbable event. Since improbable events are rare, you conclude it is more likely that your hypothesis is incorrect. How improbable must the data be to provoke such a conclusion? Mathematics cannot answer this, but values of 5% and 1% are commonly used.

b) Now that we know something of random variables, we are in a position to calculate the probabilities necessary for hypothesis testing. The three examples in section 3.4 illustrate this.

i) Testing a psychic

ii) Testing for sex discrimination

iii) Testing for religious discrimination

c) Note that in each case (as in remark 2 on page 63), you must decide ahead of time which values of the random variable are most contradictory to the your hypothesis. In the first example it is high values. In the second and third it is low values. These are all (one-sided tests). In other cases it might be some combination of the two (a two-sided test).

d) Actual calculation of the probabilities involved can be done easily by calculator, by table, or by approximation through and easier random variable (Poisson and Normal random variables approximate binomial random variables under many circumstances).

4) Expected Value of a Random Variable

a) If X is a discrete random variable, its expected value, denoted E(X) is the sum of the product of each value in the range of X with its probability of happening. That is, 
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, where the summation is over all values x in the range of X, and f is the pdf of X. This is not the “most likely” value of X. Indeed it may not be a possible value of X. It is, rather, the “average” value of X. Sometimes it is also denoted by the Greek letter 
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 and called the mean of X.

b) Example: Let X be the roll of a die. Then E(X)=1(1/6)+2(1/6)+3(1/6)+4(1/6)+5(1/6)+6(1/6)=3.5. What does this mean? Suppose we play a game in which you roll a die and then pay me the number of dollars that come up on the die (e.g., if 5 comes up you pay me $5.00). The expected value means that on average you will pay me $3.50 at every play. Thus, to make the game “fair,” I should pay you $3.50 for the privilege of you playing the game. Then on average neither of us will win anything.

c) Expected value turns out to be crucial to the profitability of casinos and insurance companies. Casinos make a profit by offering customers games with a small negative expected value to the customer. Insurance companies make a profit by setting their premiums higher than their expected payout for people in a particular class.

d) It turns out that the expected value of random variables in the families we have learned about are easy to calculate from their parameters. The proofs of the following results are in the book. We will go over them in class if we have time, but you should read the proof of the expected value of binomial random variables on your own.

i) If X~binomial(n,p), then E(X)=np.

ii) If X~geometric(p), then E(X)=1/p

iii) If X~hypergeometric(n,A,N), then E(X)=n(A/N) (compare to np).

e) Examples

i) If you hit 70% of your free throws, and shoot 20 free throws, on average you will expect to hit 20(0.7)=14 of them.

ii) If you roll two dice until you get snake eyes (a pair of ones – probability 1/36), then on average you will expect to roll 36 times.

iii) If you draw 20 beads without replacement from a sack with 70 red beads and 30 green ones, then on average you will expect to get 20(70/100)=14 red ones.
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