Math 507, Lecture 12, Fall 2003

Estimating a Binomial Probability or Proportion p (4.11–4.12)

1) The Grand Question: How can we use data to estimate a binomial probability of success p or, equivalently, the proportion, p, of a population possessing some particular property?

a) A General Answer

i) What are some of the real-world problems that involve estimation of a binomial probability? Some examples are the presidential approval (the percentage of American adults who approve of the job the president is doing) the percentage of defective parts produced by a manufacturing process, the fraction of times an o-ring fails at a particular temperature, the proportion of heavy smokers who develop lung cancer, the proportion of lung cancer patients who are cured by the best available treatment, and the proportion of 24 oz. Frosted Flakes boxes underfilled by the filling equipment.

ii) Chebyshev’s Theorem lets us balance the size of an interval (that is d, the “margin of error”) around the mean of a random variable with the probability, c (we use the letter c for confidence), that the random variable takes on values within that interval.

iii) If we are dealing with a binomial random variable, we can say a bit more. If X~binomial(n,p), then we can say a bit more. In this case (=np and (2=npq, so the mean and the standard deviation depend on n and p. Thus Chebyshev gives us a relationship among the sample size n, the probability of success p, the margin of error d (i.e., half the length of the interval around the mean), and the probability, c, of the random variable falling in this interval.

iv) Further, if we study the fraction of successes X/n then the situation is even better. Then mean of X/n is (=p and the variance is (2=pq/n. So now we can look at the probability that X/n falls in an interval centered on p, the very value we want to estimate. Further, the margin of error (which determines the length of the interval) depends on the standard deviation, which shrinks as n increases.

v) To reiterate, then, we have a relationship among four values: the probability of success p, the sample size n, the margin of error d (half the length of the interval around p), and the confidence c (the probability that X/n takes on a value within the interval). One of these, p, is beyond our control, so our estimation process will require us to balance our desire to make the sample small, the margin of error small, and the confidence level large. Improving one of these always makes one or both of the others worse.

vi) Chebyshev’s Theorem, however, is far from sharp in the lower bounds it gives on the confidence. In most cases we can improve the situation dramatically by using the normal approximation to the binomial. If n is large enough (we’ve discussed how large on p. 122), then both X and X/n are approximately normal. In particular [(X/n)-p]/( is approximately standard normal since (=p. This reduces our margin of error considerably for a given confidence level (e.g., in a normal distribution there is just over a 95% chance that the random variable falls within two standard deviations of the mean, but Chebyshev assures only an 89% chance of falling within three standard deviations).

vii) The discussion up to this point seems silly, however, in that we are trying to estimate the unknown probability p. We cannot build an interval around p if we do not know what p is! The key to our procedure, however, is that for a given sample size n, the value of X/n will fall within margin of error d of probability p with confidence c even if we do not know p. But if X/n is within d of p, then p is within d of X/n. That is, if we use X/n as an estimate of p, then we have confidence c that the error is no larger than d. We call [X/n‑d,X/n+d] a “c confidence interval for p.” (e.g., a 95% confidence interval for p).

viii) One remaining problem, however, is that whether we use Chebyshev or the normal approximation to find our probabilities, we measure the size of the confidence interval in standard deviations. The size of the standard deviation of a binomial random variable, however, depends on the unknown value of p. Thus we do not know the size of the standard deviation. What can we do?

ix) There are two common solutions to this problem. First, we may already have a rough estimate of p from a prior study, from a pilot study, or from our acquaintance with the process in question. For instance, we may already know what the presidential approval rating was last month and have no reason to think it has changed very dramatically this month. Or we may know that recovery rates for lung cancer patients have been around 25% using traditional treatments.

x) Second, the standard deviation of X/n depends on pq=p(1-p). A little calculus shows that this value can never exceed ¼. Thus if we simply replace pq by ¼, we get an upper bound on the size of the standard deviation of X/n. This approach leads to a conservative confidence interval (i.e., it makes the interval unnecessarily long under most circumstances); but it is certainly safe, and the inefficiency is small for moderate values of p (i.e., those not far from 0.5 — Recall that histograms of binomial random variables are lower and broader (indicating larger () for values of p near 0.5 and taller and narrower  (indicating smaller () for values of p far from 0.5.)

xi) We can see roughly how the conservative upper bound pq=1/4 compares to the actual value for various choices of p: If p=0.5, then pq=0.25=1/4. If p=0.4, then pq=0.24. If p=0.3, then pq=0.21. If p=0.2, then pq=0.16. If p=0.10, then pq=0.09. If p=0.01, then pq=0.0099. Thus the inefficiency develops slowly as p moves away from 0.5 and grows with increasing speed as p reaches extreme values.

xii) Oddly enough the construction of confidence intervals does not depend on the size of the population, only on the size, n, of the sample. A sample of size n=1000 produces the same confidence interval, regardless of whether it is chosen from the population of Knoxville, the population of Tennessee, the population of the US, or the practically unlimited population of possible flips of a coin. The point is that regardless of the underlying population, the proportion of successes remains the same; and this is what makes the random variable binomial with probability of success p.

xiii) The only exception is that n cannot be too large relative to the size of the population. Technically our sampling produces a hypergeometric random variable rather than a binomial one (since we generally sample without replacement). If the sample is small relative to the population size, then the difference between the two distributions is negligible. A common rule of thumb is that the sample should not exceed 5% of the population (though I have never seen the justification for this figure).

b) The Gory Details

i) Let X~binomial(n,p), and let 
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, the fraction of success in n independent trials, each of which has probability of success p. We know that E(X)=np, so 
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ii) From Chebyshev we established in Theorem 3.16 that
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But since the maximum possible value of pq is ¼, we also have
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iii) Calling the RHS of this inequality c (for confidence), we have the useful inequality
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Remembering that c depends on n and d, we see that for fixed binomial probability p this inequality relates confidence c, margin of error d, and sample size n. We worked examples in which given two of these values we tried to optimize the third, making confidence as high as possible or the margin of error or sample size as low as possible.

iv) For example, we determined how many rolls of a die are necessary in order have 95% confidence that the fraction of 1’s rolled is within 0.01 of the true value 1/6. Our answer (an upper bound) was n=27,778.

v) Chebyshev’s bounds, however, are crude compared to the actual distribution of a binomial random variable. We now seek to improve our bounds on c, d, and n using the approximate normality of most binomial distributions.

vi) In Theorem 4.13 we established
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vii) Dividing numerator and denominator the fraction by n yields corollary 4.13.2:
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viii) The key point is that after standardization 
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 becomes approximately standard normal. That is
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ix) Now we are ready for our new, improved version of  the inequality relating confidence, margin of error and sample size: Corollary 4.13.3:
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x) Proof: The trick is simply to take the inequality in the probability on the LHS and divide both sides by 
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. This gives us an approximately normal random variable between some number and its opposite, the probability of which is easily calculated from the cdf of the standard normal random variable. Here is the calculation:
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xi) The next-to-last inequality has a simple algebraic proof given in the book. It is also easy to see graphically by observing the relevant areas under the standard normal pdf curve. Note that the final expression is the confidence level c.

xii) Examples:

(1) Suppose you roll a die 1000 times. What is the probability the fraction of ones observed is within 0.01 of 1/6. Here d=0.01, n=1000, and we want to find c. It is approximately
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(2) As the book notes, we do not apply a correction for continuity in these problems.

(3) How many times must we roll a die in order to have probability 95% that the fraction of ones is within 0.01 of 1/6? Here we want to make c=0.95. That means
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(4) Since we know, d=0.01 and p=1/6, we can solve this final equation for n:
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(5) For the sake of playing it safe, we always round sample sizes up, so in this case we need a sample of n=5336 rolls. Notice what a dramatic improvement this is over our Chebyshev-based sample size of n=27,778.

(6) If we roll a die 500 times, what margin of error d must we allow in order to have 90% confidence that the fraction of ones will be within d of 1/6? The first part of the solution is identical in form to that of the previous example:
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(7) Next we solve the equation for d.
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(8) Thus the fraction of ones in 500 rolls of a fair die has probability 90% of being within 0.0275 of the true value 1/6.

(9) The previous three examples show how to solve for each of the three variables over which we have control (potentially) given knowledge (or choice) of the other two.

xiii) Page 129 of our text lists, at the bottom, six formulas that are algebraically equivalent. The most important for us are the first, third, and last. They say
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xiv) The first says that with probability c the fraction of successes in n trials will fall within margin of error d of the true probability of success p. This is the result we have been working with. The second is almost a rephrasing of the first. It says that with probability c the fraction of successes in n trials will lie in an interval extending distance d on either side of the true probability p. The third, however, has quite a different feel. It says that if we consider the interval extending distance d on either side of the fraction of successes, then there is probability c of capturing the true probability of success p within the interval.

xv) This last equation provides the definition of a confidence interval. Namely we call 
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 a c confidence interval for p (c invariably expressed as a percentage) if
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xvi) This means that the random interval 
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 has probability c of containing the binomial probability p. For instance if c=0.90, then we get a 90% confidence interval. Our text emphasizes the convention of reporting confidence as a percentage by talking about a 100 c% confidence interval. In the case just given with c=0.90 we see 100 c%=100*0.90%=90%. Of course the 100 and the % cancel each other so that the number is simply c, but this awkward phrasing often appears in freshman statistics texts.

xvii) To calculate a c confidence interval for p we need simply to find the value of d as in the third example above: Suppose z* has the property that 

P(–z(Z(z)=2(( z*)–1=c. Then as above
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xviii) This makes finding a c confidence interval a cookbook affair (as indeed most freshman statistics texts try to make it). Suppose we want an 80% confidence interval for a binomial probability p=1/6 based on a sample of 200 die roles. Here c=0.80, so we need z* that satisfies 2(( z*)–1=0.80. This means (( z*)=0.90, and using the standard, normal table backwards we find z*  is about 1.28 (simply taking the z-value from the table that makes the cdf 0.8997, the value closest to 0.9—it is also reasonable to interpolate to find a slightly more accurate value of z*).

xix) This produces the margin of error
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xx) This means that if we construct many such intervals we can expect about 80% of them to include the number 1/6.

xxi) The preceding discussion of confidence intervals is a mathematically correct exercise in probability theory, but it lacks practical value. We would like to use data to find confidence intervals for unknown values of p. Our cookbook procedure above requires us to know p in order to calculate d. It seems rather pointless to estimate p by a procedure that requires us to know p in advance. If we already know it, why estimate it?

xxii) Of course if we want to estimate p, it is tempting simply to perform the experiment n times, calculate the observed fraction of successes 
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 (most freshman statistics books call this value 
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—in either case it is a number, a particular realization of the random variable 
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), and call this an estimate of p. If pressed to give a single number estimating p, we would certainly use 
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. Such an estimate is called a point estimate of p (as opposed to an interval estimate). Point estimates are compact, but they have the disadvantages that they are always wrong (probabilistically speaking) and that they offer a measure of neither how likely they are to be close nor what is meant by close.

xxiii) Jerzy Neyman in the 1930’s proposed estimating p by the interval
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xxiv) Formally this is a realization of an approximate c confidence interval for p. Most people call it simply a c confidence interval for p. This is the same formula as before except that the exact value of p is replaced by the point estimate 
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. The justification for this substitution is not trivial. I believe it comes from the fact that for values of n above 30 the student t-distribution (which includes the extra variability introduced by replacing p by its point estimate) is extremely close to the standard normal distribution.

xxv) A more conservative approach (which we have seen before)  takes advantage of the fact, easily seen by calculus, that the maximum value of pq is ¼. This revises the above confidence intervals to
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xxvi) This is a conservative c confidence interval for p. This terminology is not common in freshman statistics texts, but the procedure is quite common in them.

xxvii) Far and away the most common choice of values for c is 95%. There is no mathematical justification for the number. It arises from convenience and custom. If c=95%, then the corresponding value of z* is 1.96. Since this is slightly under 2, many people simplify their calculations by using z*=2. This leads to the “very conservative 95% confidence interval for p”
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xxviii) For example, I used MS Excel to generate 1000 die rolls and count the number of ones, of which there were exactly 170. If I do not know the probability of rolling a one is 1/6, how can I estimate it in the three ways above?

xxix) To get an approximate 95% confidence interval, we compute as follows (note that we always round so as to make the interval larger).
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xxx) To get a conservative 95% confidence interval, we compute
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xxxi) [image: image1.wmf]XXn
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Finally, to get a “very conservative 95% confidence interval, we compute

xxxii) According to the text, when the press reports estimates of binomial probabilities, it typically uses the “very conservative 95% confidence interval”. Instead of using this terminology, however, the press reports 
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 as the value of p with a margin of error of 
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. For instance the final confidence interval above would appear as “the average fraction of ones on a die roll is 0.17 based on a sample of size 1000. The margin of error is 3% (note 
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2) Confidence Intervals for Means

a) Although our text does not address the question, most freshman statistics texts develop confidence intervals for a mean ( before doing so for binomial probabilities.

b) The approach is quite similar to what we have done, appealing to the Central Limit Theorem rather than deMoivre-Laplace to establish approximate normality of 
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. Once again the problem arises that the formula for the margin of error depends on ( (which is what we are trying to estimate), but here there is no maximum like pq(1/4 to give a guaranteed upper bound. The only recourse is to take the first approach above (the one that produced the “non-conservative” c confidence interval), using 
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 in place of ( in the relevant formulas.

c) It is possible to find confidence intervals for other parameters, like (, as well. The techniques and robustness vary. Also, we have studied only “two-tailed” symmetric confidence intervals, but other possibilities exist. In particular it is possible to construct a one-tailed confidence interval (e.g., one that has a finite margin of error toward small values but an infinite margin of error toward large values). I have the impression that few people have found uses for such tools.
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