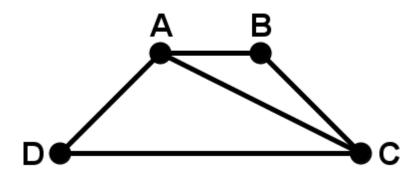
Intro to Contemporary Math Planar Graphs

Nicholas Nguyen nicholas.nguyen@uky.edu

Department of Mathematics UK

Announcements


Your project (all parts) must be uploaded on Canvas by Tuesday, November 20th.

► There will be a homework assignment on WebWork It will be due Monday, November 26th.

► Mini-Exam 4 is Wednesday, November 28th.

Graphs with no Overlaps

Definition: A graph is planar if it can be drawn so that its edges do not cross.

Faces of a Graph

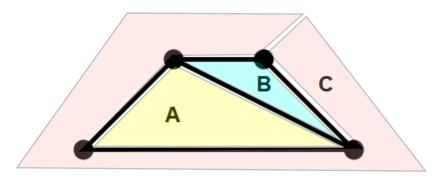
In any planar graph, drawn with no intersections, the edges divide the planes into different regions.

► The regions enclosed by the planar graph are called interior faces of the graph.

Faces of a Graph

In any planar graph, drawn with no intersections, the edges divide the planes into different regions.

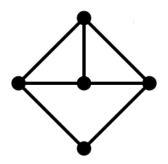
- The regions enclosed by the planar graph are called interior faces of the graph.
- ► The region surrounding (outside) the planar graph is called the exterior face of the graph.


Þ

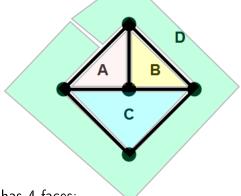
Faces of a Graph

In any planar graph, drawn with no intersections, the edges divide the planes into different regions.

- The regions enclosed by the planar graph are called interior faces of the graph.
- ► The region surrounding (outside) the planar graph is called the **exterior face** of the graph.
- ▶ When we say faces of the graph we mean BOTH the interior AND the exterior faces. We usually denote the number of faces of a planar graph by f.


Face Count Example

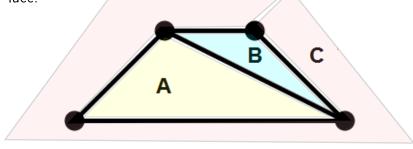
This graph has a total of three faces: f = 3


- ► Two interior faces (A, B)
- ▶ One exterior face (C)

?(3.2) Face Count Example 2

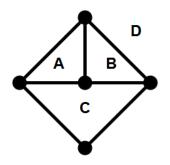
How many faces does this graph have (what is f)? Type and send a number.

Face Count Example 2

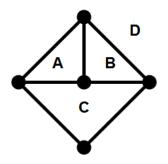

This graph has 4 faces:

A, B, and C are interior faces

D is the exterior face


Degree of a Face

For a planar graph drawn without edges crossing, the number of edges bordering a particular face is called the degree of the face.


The two interior faces A and B have degree 3, while the exterior face C has degree 4.

?(3.3) Degree of a Face Example 2

- ► The interior faces A and B each have degree 3.
- ► The degree of face C is what number?

Degree of a Face Example 2

- ▶ The interior faces A and B each have degree 3.
- ► The interior face C has degree 4.
- ► The exterior face D has degree 4.

Sum of Degrees

In a planar graph,

▶ If you add up the degrees of every vertex and divide by 2, you get the number of edges.

▶

Sum of Degrees

In a planar graph,

- ▶ If you add up the degrees of every vertex and divide by 2, you get the number of edges.
- If you add up the degrees of every face and divide by
 2, you get the number of edges.

•

Sum of Degrees

In a planar graph,

- ▶ If you add up the degrees of every vertex and divide by 2, you get the number of edges.
- If you add up the degrees of every face and divide by
 2, you get the number of edges.
- ► Conversely, if you take the number of edges and multiply by 2, you get the sum of degrees of the vertices or faces.

Sum of Degrees Picture (Vertices)

One edge is attached to **TWO** vertices, and gets counted in degree of left vertex and right vertex.

Sum of Degrees Picture (Faces)

One edge borders **TWO** faces, and gets counted in degree of upper face and lower face.

?(3.4) Sum of Degrees Example

A graph has degree list 2, 2, 3, 3, 4, 4, 5, 5. How many edges does it have?

Type and send a number.

Sum of Degrees Example

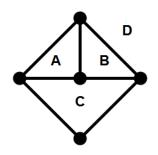
A graph has degree list 2, 2, 3, 3, 4, 4, 5, 5. Add up degrees of vertices:

$$2+2+3+3+4+4+5+5=28$$

then divide by 2 to get the number of edges e:

$$\frac{28}{2} = \boxed{14}$$

Note: Since the degree list has 8 entries, the graph must have 8 vertices.


Euler's Formula

There is another relationship between the number of vertices, edges, and faces:

► For a connected (one-piece) planar graph with v vertices, e edges, and f faces,

$$v - e + f = 2$$

Euler's Formula Showcase

$$v = 5$$
, $e = 7$, $f = 4$:

$$v - e + f = 5 - 7 + 4 = 2$$
.

?(3.5) Euler's Formula Example

A connected planar graph has 24 vertices and 30 faces. How many edges does the graph have? Type and send a number.

Euler's Formula Example

v = 24 and f = 30, so in Euler's formula,

$$v - e + f = 2$$

 $24 - e + 30 = 2$
 $-e + 54 = 2$
 $-e = 2 - 54 = -52$
 $e = 52$

so there are 52 edges: e = 52.

?(3.6) Euler's Formula Example

$$v-e+f = 2$$

 $24-e+30 = 2$
 $-e+54 = 2$
 $-e = 2-54 = -52$
 $e = 52$

so there are 52 edges: e = 52.

What number would you get if you add up the degrees of the vertices? v = 24 and f = 30, so in Euler's formula,

$$v-e+f = 2$$

 $24-e+30 = 2$
 $-e+54 = 2$
 $-e = 2-54 = -52$
 $e = 52$

so there are 52 edges: e = 52

► Thus, the sum of the degrees of every vertex is 2 times the number of edges:

$$2e = 2 \times 52 = 104$$

Next Time

► Graphs with Labeled Edges