Intro to Contemporary Math Weighted Graphs and Shortest Paths

Nicholas Nguyen nicholas.nguyen@uky.edu

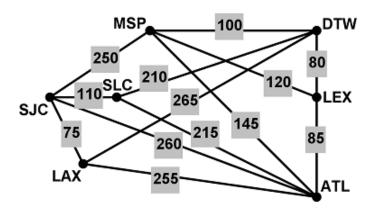
Department of Mathematics UK

Agenda

- ► Weighted Graphs
- ▶ Paths and Circuits
- Algorithms

Announcements

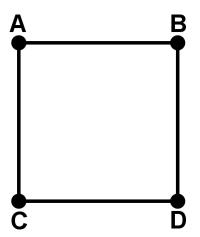
- ► There is a homework assignment on WebWork due tonight.
- Mini-Exam 4 is this Wednesday.


Weights

A weight on an edge is a numerical label representing a measurement involving the relationships modeled by the graph and its edges.

(Don't Copy) Example: Airline Routes

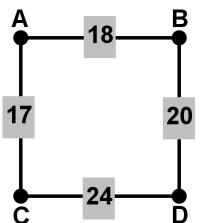
Vertices: Airports Edges: Direct Flights


Weights: flight time (minutes)

Example

Vertices: Locations

Edges: Streets

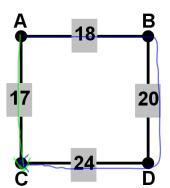


Example

Vertices: Locations

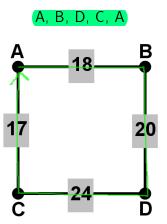
Edges: Streets

Weights: Walking Time (minutes)



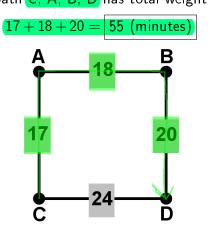
Paths and Circuits

A path is a sequence of vertices using the edges. For example, I can get from A to C via the path:

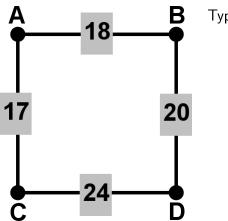

A, B, D, C

or just going A, C.

Paths and Circuits


A circuit is a path that starts and ends at the same vertex. For example, a round trip from A could be

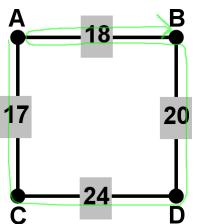
Total Weight


The total weight of a path is the sum of the weights on each edge that is traveled along the path.

Example: The path (C, A, B, D) has total weight

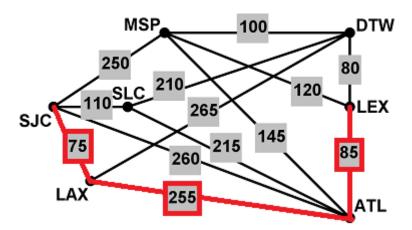
?(4.1) Total Weight

Find the total weight of the path A, C, D, B, A, B.

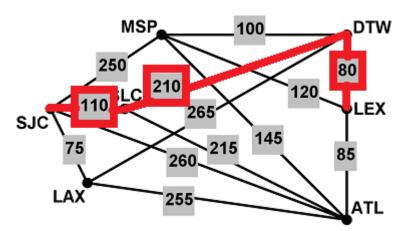


Type and send a number.

Total Weight


The total weight of the path A, C, D, B, A, B is

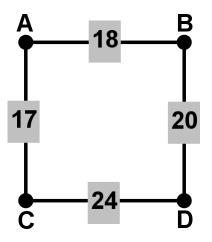
$$17 + 24 + 20 + 18 + 18 = \boxed{97}$$


Total Weights: Flight Time

Total weight of path (LEX, ATL, LAX, SJC) is total flight time: 85 + 255 + 75 = 415 minutes.

Total Weights: Flight Time

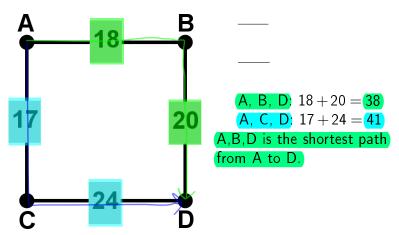
Total weight of path (LEX, DTW, SLC, SJC) is total flight time: 80 + 210 + 110 = 400 minutes.



Shortest Path

The **shortest path** between two vertices A and B on a weighted graph is the path from A to B which has the lowest total weight among all paths from A to B.

?(4.2) Shortest Path


Which of these is the shortest path from A to D?

Type and send a list of vertices, starting at A and ending at D.

Shortest Path

Which of these is the shortest path from A to D?

Algorithms

► An algorithm is a sequence of steps for a calculation (a procedure).

Algorithms

- An algorithm is a sequence of steps for a calculation (a procedure).
- An algorithm for finding a path with the smallest total weight is optimal if it always produces the actual shortest path.

Þ

Algorithms

- ► An algorithm is a sequence of steps for a calculation (a procedure).
- An algorithm for finding a path with the smallest total weight is optimal if it always produces the actual shortest path.
- An algorithm is efficient if it can be carried out in a reasonable amount of time.

Algorithm: Brute Force

► The Brute Force Algorithm searches for the shortest path between two vertices by listing every path, finding their total weights, and choosing the path with the lowest total weight.

Brute Force Evaluation

- ▶ The Brute Force Algorithm searches for the shortest path between two vertices by listing every path, finding their total weights, and choosing the path with the lowest total weight.
- ► The brute force algorithm is **optimal** (theoretically it will get the shortest path), but it is **inefficient** because we have to check so many possible paths.

Next Time

Dijkstra's algorithm: finding shortest paths