Intro to Contemporary Math Conditional Probability and Tables

Department of Mathematics UK

October 8, 2018

Announcement

Homework due tonight.

Conditional Probability Computation

Let E and F be events in a sample space Ω . Then P(F|E), the probability of getting an outcome in event F given that the outcome is in event E, is

$$P(F|E) = \frac{\text{Number of outcomes in } E \cap F}{\text{Number of outcomes in } E}.$$

Hint: The given event appears in the denominator. This formula is very useful when working with tables.

Independent Events

Let E and F be events in a sample space Ω . Then E and F are said to be **independent events** if

$$P(F|E) = P(F)$$
.

That is, the conditional probability of F given that E occurred is the same as the (regular) probability of F.

The probability of F occurring is the same whether or not E occurs.

Checking Independence

Let E and F be events in a sample space Ω . To check if E and F are independent events,

- 1. Compute P(E), P(F), and P(F|E).
- 2. Compare P(F|E) and P(F). Are they equal or not?

Checking Independence

Let E and F be events in a sample space Ω . To check if E and F are independent events,

- 1. Compute P(E), P(F), and P(F|E).
- 2. Compare P(F|E) and P(F). Are they equal or not?
- ▶ If P(F|E) and P(F) are equal, then E and F are independent events.
- If P(F|E) and P(F) are different numbers, then E and F are not independent events.

Home and Away Games

The stats for a sports team's season are given in the table. It records wins and losses in home and away games:

	Wins	Losses	Total
Home	21	3	24
Away	11	5	16
Total	32	8	40

The stats for a sports team's season are given in the table. It records wins and losses in home and away games:

	Wins	Losses	Total
Home	21	3	24
Away	11	5	16
Total	32	8	40

- ► The team played 21 games that were winning home games.

The stats for a sports team's season are given in the table. It records wins and losses in home and away games:

	Wins	Losses	Total
Home	21	3	24
Away	11	5	16
Total	32	8	40

- ► The team played 21 games that were winning home games.
- ▶ There were a total of 24 home games.

The stats for a sports team's season are given in the table. It records wins and losses in home and away games:

	Wins	Losses	Total
Home	21	3	24
Away	11	5	16
Total	32	8	40

- ► The team played 21 games that were winning home games.
- ▶ There were a total of 24 home games.
- ► The team won 32 games.

The stats for a sports team's season are given in the table. It records wins and losses in home and away games:

	Wins	Losses	Total
Home	21	3	24
Away	11	5	16
Total	32	8	40

- ► The team played 21 games that were winning home games.
- ▶ There were a total of 24 home games.
- ▶ The team won 32 games.
- ▶ The team played 40 games in total.

Home and Away Games (Events)

The stats for a sports team's season are given in the table. It records wins and losses in home and away games:

	Wins	Losses	Total
Home	21	3	24
Away	11	5	16
Total	32	8	40

Suppose a game is chosen at random.

- ▶ Let E be the event "the game was a home game."
- ▶ Let F be the event "the team won the game."

Home and Away Games (E)

The stats for a sports team's season are given in the table. It records wins and losses in home and away games:

	Wins	Losses	Total
Home	21	3	24
Away	11	5	16
Total	32	8	40

The probability that the team played at home is

$$P(E) = \frac{24 \text{ home games}}{40 \text{ games total}} = \frac{24}{40}.$$

Home and Away Games (F)

The stats for a sports team's season are given in the table. It records wins and losses in home and away games:

	Wins	Losses	Total
Home	21	3	24
Away	11	5	16
Total	32	8	40

The probability that the team won is

$$P(F) = \frac{32 \text{ winning games}}{40 \text{ games total}} = \frac{32}{40}.$$

The stats for a sports team's season are given in the table. It records wins and losses in home and away games:

	Wins	Losses	Total
Home	21	3	24
Away	11	5	16
Total	32	8	40

The probability that the game took place at home and was a winning game is

$$P(E \cap F) = \frac{21 \text{ games won at home}}{40 \text{ games total}} = \frac{21}{40}.$$

Home and Away Games (F|E)

The stats for a sports team's season are given in the table. It records wins and losses in home and away games:

	Wins	Losses	Total
Home	21	3	24
Away	11	5	16
Total	32	8	40

The probability that the team won **given** that it was a home game is

$$P(F|E) = \frac{21 \text{ games won at home}}{24 \text{ home games}}$$

Home and Away Games (F|E)

The stats for a sports team's season are given in the table. It records wins and losses in home and away games:

	Wins	Losses	Total
Home	21	3	24
Away			
Total			

The probability that the team won **given** that it was a home game is

$$P(F|E) = \frac{21 \text{ games won at home}}{24 \text{ home games}} = \frac{21}{24}.$$

The given event tells us to restrict to the row of home games.

Home and Away Games (E|F)

The stats for a sports team's season are given in the table. It records wins and losses in home and away games:

	Wins	Losses	Total
Home	21	3	24
Away	11	5	16
Total	32	8	40

The probability that the game was at home **given** that the team won is

$$P(E|F) = \frac{21 \text{ games won at home}}{32 \text{ winning games}}$$

Home and Away Games (E|F)

The stats for a sports team's season are given in the table. It records wins and losses in home and away games:

	Wins	Losses	Total
Home	21		
Away	11		
Total	32		

The probability that the game was at home **given** that the team won is

$$P(E|F) = \frac{21 \text{ games won at home}}{32 \text{ winning games}} = \frac{21}{32}.$$

The given event tells us to restrict to the column of wins.

Home and Away Games: Independence

To check if the events E, "the game was a home game," and F, "the team won the game," are independent, we compare P(F) and P(F|E).

$$P(F) = \frac{32}{40} = 0.8$$
; but $P(F|E) = \frac{21}{24} = 0.875$.

Home and Away Games: Independence

To check if the events E, "the game was a home game," and F, "the team won the game," are independent, we compare P(F) and P(F|E).

$$P(F) = \frac{32}{40} = 0.8$$
; but $P(F|E) = \frac{21}{24} = 0.875$.

Since P(F) and P(F|E) are **not equal**, the events are not independent.

To check if the events E, "the game was a home game," and F, "the team won the game," are independent, we compare P(F) and P(F|E).

$$P(F) = \frac{32}{40} = 0.8$$
; but $P(F|E) = \frac{21}{24} = 0.875$.

Since P(F) and P(F|E) are **not equal**, the events are not independent.

Notice that the team is more likely to win their home games: P(F|E) is a little larger than P(F).

The stats for a sports team's season are given in the table. It records wins and losses in home and away games:

	Wins	Losses	Total
Home	21	3	24
Away	11	5	16
Total	32	8	40

To find the probability that the game was at home or a winning game, we count:

The stats for a sports team's season are given in the table. It records wins and losses in home and away games:

	Wins	Losses	Total
Home	21	3	24
Away	11	5	16
Total	32	8	40

To find the probability that the game was at home **or** a winning game, we count:

the 21 games which were winning home games,

The stats for a sports team's season are given in the table. It records wins and losses in home and away games:

	Wins	Losses	Total
Home	21	3	24
Away	11	5	16
Total	32	8	40

To find the probability that the game was at home or a winning game, we count:

the 21 games which were winning home games, the 3 other games that took place at home, and

The stats for a sports team's season are given in the table. It records wins and losses in home and away games:

	Wins	Losses	Total
Home	21	3	24
Away	11	5	16
Total	32	8	40

To find the probability that the game was at home **or** a winning game, we count:

the 21 games which were winning home games, the 3 other games that took place at home, and the 11 other winning games.

The stats for a sports team's season are given in the table. It records wins and losses in home and away games:

	Wins	Losses	Total
Home	21	3	24
Away	11	5	16
Total	32	8	40

To find the probability that the game was at home or a winning game, we count:

the 21 games which were winning home games, the 3 other games that took place at home, and the 11 other winning games.

The union is an event in the sample space of all 40 games.

	Wins	Losses	Total
Home	21	3	24
Away	11	5	16
Total	32	8	40

To find the probability that the game was at home or a winning game, we count:

the 21 games which were winning home games, the 3 other games that took place at home, and the 11 other winning games.

The union is an event in the sample space of all 40 games.

$$P(E \bigcup F) = \frac{21+3+11}{40 \text{ games total}} = \frac{35}{40}.$$

The Star Player

The stats for a sports team's season are given in the table. This team has a star player who got injured in the middle of the season. The table records wins and losses and whether the star player was in or not in the game:

	Wins	Losses	Total
Star in	12	4	16
Star out	15	5	20
Total	27	9	36

The Star Player

The stats for a sports team's season are given in the table. This team has a star player who got injured in the middle of the season. The table records wins and losses and whether the star player was in or not in the game:

	Wins	Losses	Total
Star in	12	4	16
Star out	15	5	20
Total	27	9	36

Suppose a game is chosen at random.

- ▶ Let E be the event "the star player was in the game."
- ▶ Let F be the event "the team won the game."

?(7.1) The Star Player (E)

	Wins	Losses	Total
Star in	12	4	16
Star out	15	5	20
Total	27	9	36

What is the probability of picking a game that the star player played in?

The Star Player (E)

	Wins	Losses	Total
Star in	12	4	16
Star out	15	5	20
Total	27	9	36

The probability that the star player played is

$$P(E) = \frac{16 \text{ games with star}}{36 \text{ games total}} = \frac{16}{36}.$$

?(7.2) The Star Player (F)

	Wins	Losses	Total
Star in	12	4	16
Star out	15	5	20
Total	27	9	36

What is the probability of picking a winning game?

The Star Player (F)

	Wins	Losses	Total
Star in	12	4	16
Star out	15	5	20
Total	27	9	36

The probability that the team won is

$$P(F) = \frac{27 \text{ winning games}}{36 \text{ games total}} = \frac{27}{36}.$$

?(7.3) The Star Player $(B \cap F)$

	Wins	Losses	Total
Star in	12	4	16
Star out	15	5	20
Total	27	9	36

What is the probability of picking a game that has the star player in it **and** was a winning game?

The Star Player $(E \cap F)$

	Wins	Losses	Total
Star in	12	4	16
Star out	15	5	20
Total	27	9	36

The probability that the game had the star player and was a winning game is

$$P(E \cap F) = \frac{12 \text{ winning games with star}}{36 \text{ games total}} = \frac{12}{36}.$$

?(7.4) The Star Player (?|?)

	Wins	Losses	Total
Star in	12	4	16
Star out	15	5	20
Total	27	9	36

What is the probability of picking a winning game given that the chosen game has the star player in it?

The Star Player (F|E)

	Wins	Losses	Total
Star in	12	4	16
Star out			
Total			

The probability that the team won **given** that the star player was in is

$$P(F|E) = \frac{12 \text{ winning games with star}}{16 \text{ games with star}} = \frac{12}{16}.$$

?(7.5) The Star Player (?|?)

	Wins	Losses	Total
Star in	12	4	16
Star out	15	5	20
Total	27	9	36

What is the probability of picking a game that has the star player in it given that the chosen game was a winning game?

The Star Player (E|F)

	Wins	Losses	Total
Star in	12		
Star out	15		
Total	27		

The probability that the star player was in **given** that the team won is

$$P(E|F) = \frac{12 \text{ winning games with star}}{27 \text{ winning games}} = \frac{12}{27}.$$

?(7.6) The Star Player: Independence

- ▶ Let E be the event "the star player was in the game."
- ▶ Let F be the event "the team won the game."

Our computations so far:

$$P(E) = \frac{16}{36}$$

►
$$P(F) = \frac{27}{36}$$

$$P(F|E) = \frac{12}{16}$$

$$P(E|F) = \frac{12}{27}$$

Based on these calculations, are the events E and F independent?

The Star Player: Independence

Let E be the event "the star player was in the game." Let F be the event "the team won the game." The events are independent, because

$$P(F) = \frac{27}{36}$$
, or 0.75

is equal to

$$P(F|E) = \frac{12}{16}$$
, or 0.75.

It looks like the team's likelihood of winning over the season did not get affected by the star player's sidelining.

?(7.7) The Star Player $(E \cup F)$

	Wins	Losses	Total
Star in	12	4	16
Star out	15	5	20
Total	27	9	36

What is the probability of picking a game that has the star player in it or was a winning game?

The Star Player $(E \cup F)$

	Wins	Losses	Total
Star in	12	4	16
Star out	15	5	20
Total	27	9	36

To find the probability that the game had the star player, or was a winning game, we count:

the 12 games which were winning games with the star, the 4 other games the star played in, and the 15 other winning games:

$$P(E \bigcup F) = \frac{12+4+15}{36 \text{ games total}} = \frac{31}{36}.$$