Intro to Contemporary Math Probability Theory Introduction

Department of Mathematics UK

Announcements

- ► Exam 1 will be returned next Monday. Grades will be posted on Sunday.
- ► You have a new homework assignment. It is due next Monday.

Topic Idea: Probability

Definition

The **probability** of an event is a measurement of its likelihood to occur.

There are two interpretations of probability: **experimental** and **theoretical**.

Fractions

In both interpretations, we use fractions to express portions of quantities, and in general, quantities which are not whole numbers.

Example

The fraction

$$\frac{2}{5}$$
, or 2/5

means two parts out of five total.

Fractions

In both interpretations, we use fractions to express portions of quantities, and in general, quantities which are not whole numbers.

Example

The fraction

$$\frac{2}{5}$$
, or 2/5

means two parts out of five total.

Fractions can be converted to decimals by dividing:

$$2/5 = 0.4,$$

but we will use fractions for better accuracy.

Experimental Probability

Perform an experiment over and over, and divide the number of times a desired event occurs by the total number of times the experiment was performed.

Example

Experimental Probability

Perform an experiment over and over, and divide the number of times a desired event occurs by the total number of times the experiment was performed.

Example

We could toss a coin 100 times. If it came up heads 47 times, we would have measured that the probability of flipping this coin and getting heads is

$$\frac{\text{number of heads}}{\text{total tosses}} = \frac{47}{100}.$$

Theoretical Probability

Suppose an experiment can end in n ways. If the results cannot be told apart except by name, we assume they are equally-likely, and assign each result a probability of

 $\frac{1}{n}$.

Example

Theoretical Probability

Suppose an experiment can end in n ways. If the results cannot be told apart except by name, we assume they are equally-likely, and assign each result a probability of

 $\frac{1}{n}$.

Example

The coin can land in 1 of 2 ways: heads or tails. If we assume the coin is equally-likely to land heads or tails, then the probability of each result is

$$\frac{\text{One side is heads}}{\text{Two sides total}} = \frac{1}{2}.$$

Outcomes and Events

Definitions

A (chance) experiment is a procedure whose result can be one out of many possibilities.

- ► Each possible result is called an outcome.
- \blacktriangleright
- •

Outcomes and Events

Definitions

A (chance) experiment is a procedure whose result can be one out of many possibilities.

- ► Each possible result is called an outcome.
- An event is any particular outcome or group of outcomes.
- ► The sample space is a list of all possible outcomes.

If we roll a six-sided die, one numbered side will be on top of the die when it lands.

- ▶ There are a total of 6 outcomes, one for each side.
- •

If we roll a six-sided die, one numbered side will be on top of the die when it lands.

- There are a total of 6 outcomes, one for each side.
- ► Example of an event: "We roll an odd number." The outcomes "1," "3," and "5" are described by this event.

Þ

If we roll a six-sided die, one numbered side will be on top of the die when it lands.

- There are a total of 6 outcomes, one for each side.
- ► Example of an event: "We roll an odd number." The outcomes "1," "3," and "5" are described by this event.
- The sample space is a list of all sides:

$$\{1,2,3,4,5,6\}$$
.

Computing Probability

Given that all outcomes are equally-likely, the probability of an event, P("Event"), is

$$P("Event") = \frac{\text{Number of outcomes described by the event}}{\text{Total number of outcomes}}$$

In other words, it is the ratio of outcomes in the event compared to the total amount of outcomes.

Computing Probability

Given that all outcomes are equally-likely, the probability of an event, P("Event"), is

$$P("Event") = \frac{\text{Number of outcomes described by the event}}{\text{Total number of outcomes}}$$

In other words, it is the ratio of outcomes in the event compared to the total amount of outcomes.

Note: The probability of an event must be a number between 0 and 1.

An event with a probability of 0 is impossible.

An event with a probability of 1 is certain.

► The event "We roll a 5" describes one outcome (5 on top), so

$$P("We roll a 5") = \frac{One side with a 5}{Six sides total} = \left| \frac{1}{6} \right|.$$

► The event "We roll an odd number" describes three outcomes: 1, 3, or 5 on top. Thus

$$P("We roll an odd number") = \frac{Three sides in event}{Six sides total}$$
$$= \frac{3}{6}$$

► The event "We roll an odd number" describes three outcomes: 1, 3, or 5 on top. Thus

$$P("We roll an odd number") = \frac{Three sides in event}{Six sides total}$$
$$= \frac{3}{6}$$

The answer 3/6 can be reduced to 1/2, or to the decimal expression 0.5, but the original answer makes it easier to see the number of outcomes in the event and sample space.

► The event "We roll a 7" describes no outcomes (7 is not on the die), so

$$P("We roll a 7") = \frac{No outcomes in event}{Six outcomes total} = \begin{vmatrix} 0 \\ 6 \end{vmatrix}, or 0.$$

This event is impossible.

► The event "We roll a number" describes all six outcomes (all six sides have a number on them), so

$$P("We roll a number") = \frac{Six outcomes in event}{Six outcomes total} = \frac{6}{6}, or 1.$$

This event is certain to occur.

?(1.1) Six-Sided Die

On a six-sided die, what is the probability of the event "We roll a number strictly greater than 2?"

Give a fraction as your answer.

You do not need to reduce your answer.

The event "We roll a number strictly greater than 2" describes four outcomes: 3, 4, 5, or 6 on top. Thus

$$\frac{\text{Four outcomes in event}}{\text{Six outcomes total}} = \boxed{\frac{4}{6}} = \frac{2}{3}.$$

?(1.2) Marbles

A jar has 11 red marbles and 16 blue ones. If a marble is drawn at random, what is the probability of drawing a blue marble?

Marbles

A jar has 11 red marbles and 16 blue ones. If a marble is drawn at random, what is the probability of drawing a blue marble? Our sample space is all the marbles in the jar:

There are 11 + 16 = 27 marbles total.

Hence the probability of drawing a blue marble is

$$\frac{16 \text{ blue marbles}}{27 \text{ marbles total}} = \boxed{\frac{16}{27}}.$$

Checking Answers

The probability of an event is a number between 0 and 1.

▶ The number of outcomes in an event (numerator) cannot be negative and it cannot be more than the total number of outcomes (denominator).

 \triangleright

Checking Answers

The probability of an event is a number between 0 and 1.

- ▶ The number of outcomes in an event (numerator) cannot be negative and it cannot be more than the total number of outcomes (denominator).
- You can convert to a decimal to see how big a fraction is.

Example: if you are computing the probability of an event and get an answer that converts to 1.11, it must be wrong: it is too big.

?(1.3) Numbers which can be Probabilities

```
Which of these numbers can be a probability of an event? 3/2 4.6 -6/7 8/9 1.2 101\%
```

Numbers which can be Probabilities

Which of these numbers can be a probability of an event?

$$8/9 = \frac{8 \text{ outcomes in the event}}{9 \text{ outcomes total}}$$

The probability of any event must be a number between 0 and 1.

A number like 3/2 cannot be a probability. No event can have 3 outcomes in a sample space with only 2.

End

- ► Exam 1 will be returned next Monday. Grades will be posted on Sunday.
- ➤ You have a new homework assignment. It is due next Monday.