Probability Worksheet #5 October 1, 2018 2 Points

Circle o	ne name.	•		
Name:	Solutions	Name:	Name:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

1. A deck of 15 cards has 3 suits (A-C) and 5 ranks (1-5).

$Suit\Rank$	1	2	3	4	5
A	Á1	A2	A3	A4	A5
B	B1	B2	B3	B4 C4	B5
C	C1	C2	C3	C4	C5

A single card is drawn at random.

- (a) What is the probability of drawing the card B2? $\frac{1}{15}$
- (b) What is the probability of drawing a card with suit B? $\frac{5}{15}$
- (c) What is the probability of drawing a card with even rank? $\frac{\delta}{15}$ $\left(\operatorname{Rank} 2 \rightarrow \frac{2}{15} + \operatorname{Rank} 3 \rightarrow \frac{3}{15} \right)$
- (d) What is the probability of drawing a card with suit B and even rank? $\frac{2}{15}$ (B2 and B4)
- (e) What is the probability of drawing a card with suit B or even rank? 9 (All B cards plus)
- 2. A deck of cards has 3 suits (A–C) and 5 ranks (1–5), but cards A2 and B4 are missing! There are only 13 cards now. A single card is drawn at random.
 - (a) What is the probability of drawing the card B2? $\frac{1}{13}$
 - (b) What is the probability of drawing a card with suit B? $\frac{U}{13}$ (B4 is missing)
 - (c) What is the probability of drawing a card with even rank? $\frac{4}{13}$ (A2 and B4 are missing)
 - (d) What is the probability of drawing a card with suit B and even rank? 1 (only B2, B4 nlssing)
 - (e) What is the probability of drawing a card with suit B or even rank?

11 suits x 25 ranks = 275 cords total

- 3. A deck of cards has 11 suits (A-K) and 25 ranks (1-25), with no missing cards. A single card is drawn at random.
 - (a) What is the probability of drawing a card whose suit is a vowel (A, E, I, O, or U)?

(b) What is the probability of drawing a card whose rank is a multiple of 6 (6, 12, ??,...)?

(c) What is the probability of drawing a card whose suit is a vowel and whose rank is a multiple of 6?

(d) What is the probability of drawing a card whose suit is a vowel or whose rank is a multiple of 6?

$$\frac{75}{275} + \frac{44}{275} - \frac{12}{275} = \frac{107}{275}$$

$$\frac{12}{275} = \frac{107}{275}$$

$$\frac{12}{275} = \frac{107}{275}$$

$$\frac{1}{275} = \frac$$