Probability Worksheet #2 September 24, 2018 2 Points

Circle	one	name.
	OIIC	mann.

Name:	Name:	Name:

Note: If A and B are two subsets of a set X, then:

- \overline{A} is the set of members of X that are not in A (the complement of A).
- $A \cup B$ is the set of members of X that are in A or in B (or both) (the union of A and B).
- $A \cap B$ is the set of members of X that are in A and also in B (the intersection of A and B).

Here is a list of 123 beads sorted by color and shape.

	Δ		Total
Red	1	8	9
Green	64	16	80
Blue	2	32	34
Total	67	56	123

A single bead is drawn at random. Let E be the event "The bead is green," and F be the event "The bead is a square."

Determine:

- 1. P(E), the probability that the bead is green
- 2. $P(\overline{E})$, the probability that the bead is not green
- 3. P(F), the probability that the bead is a square
- 4. $P(\overline{F})$, the probability that the bead is not a square
- 5. $P(E \cup F)$, the probability that the bead is green or the bead is a square (or both)
- 6. $P(E \cap F)$, the probability that the bead is green and is also a square
- 7. Why does this make sense:

$$P(E \cup F) = P(E) + P(F) - P(E \cap F)$$