Shapes and Designs Extensions 3

- 1. Write a clear explanation of the measurement of angles in radians and why this is a more natural notion than measurement in degrees.
- 2. Propose a definition of the measure of a solid angle where three, four, or more planes meet at common vertex of a polyhedron, and explain why your definition is reasonable. In particular, your definition should be compatible with a three-dimensional analog of the Angle Addition Postulate (*CliffsQuickReview Geometry*, p. 12).
- 3. Describe all possible cases when two sets (r, θ) , (r', θ') of polar coordinates actually correspond to the same point.
- 4. Review the definitions of trigonometric functions from the unit circle.
 - (a) Drawing on this, sketch the graphs of the functions $f(\theta) = \sin \theta$ and $f(\theta) = \cos \theta$, and explain how you can deduce these naturally from the unit circle definition,
 - (b) Continuing to think about the unit circle definition, complete the following formulas and give brief explanations for each.
 - i. $\sin(-\theta) = -\sin(\theta)$. ii. $\cos(-\theta) =$ iii. $\sin(\pi + \theta) =$ iv. $\cos(\pi + \theta) =$ v. $\sin(\pi - \theta) =$ vi. $\cos(\pi - \theta) =$ vii. $\sin(\pi/2 + \theta) =$ viii. $\cos(\pi/2 + \theta) =$ ix. $\sin(\pi/2 - \theta) =$ x. $\cos(\pi/2 - \theta) =$ xi. $\sin^2(\theta) + \cos^2(\theta) =$
- 5. Describe a procedure to determine the rectangular coordinates (x, y) of a point from its polar coordinates (r, θ) and justify why it works.
- 6. Cylindrical and Spherical Coordinates

(a) Justify the following conversion from cylindrical coordinates (r, θ, z) to rectangular coordinates (x, y, z).

$$\begin{array}{rcl} x & = & r\cos\theta\\ y & = & r\sin\theta\\ z & = & z \end{array}$$

(b) Justify the following conversion from spherical coordinates (r, θ, ϕ) to rectangular coordinates (x, y, z).

 $\begin{aligned} x &= r \cos \theta \sin \phi \\ y &= r \sin \theta \sin \phi \\ z &= r \cos \phi \end{aligned}$

- Read Chapter 2 of CliffsQuickReview Geometry on Parallel Lines. Prove Theorems 17– 24.
- 8. It turns out that without assuming Postulates 11 and 12 of *CliffsQuickReview* one can prove that the sum of the measures of the angles of any triangle cannot exceed 180 degrees.
 - (a) Learn the proof of this angle sum theorem. See, for example, the proof of the Saccheri-Legendre Theorem in Kay, College Geometry: A Discovery Approach.
 - (b) Use this result to prove Postulate 12, thereby showing that it was not necessary to assume this as a postulate after all.