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1 Polya’s Four Phases of Problem Solving

The following comes from the famous book by George Polya called How to Solve it.

1. Understanding the Problem.

You have to understand the problem. What is the unknown? What are the data? What
is the condition? Is it possible to satisfy the condition? Is the condition sufficient to
determine the unknown? Or is it insufficient? Or redundant? Or contradictory?

Draw a figure. Introduce suitable notation.

Separate the various parts of the condition. Can you write them down?

2. Devising a Plan.

Find the connection between the data and the unknown. You may be obliged to
consider auxiliary problems if an immediate connection cannot be found. You should
obtain eventually a plan of the solution.

Have you seen it before? Or have you seen the same problem in a slightly different
form?

Do you know a related problem? Do you know a theorem that could be useful?

Look at the unknown! And try to think of a familiar problem having the same or a
similar unknown.

Here is a problem related to yours and solved before. Could you use it? Could you use
its result? Could you use its method? Should you introduce some auxiliary element in
order to make its use possible?

Could you restate the problem? Could you restate it still differently? Go back to
definitions.

If you cannot solve the proposed problem try to solve first some related problem.
Could you imagine a more accessible related problem? A more general problem? A
more special problem? An analogous problem? Could you solve a part of the problem?
Keep only a part of the condition, drop the other part; how far is the unknown then
determined, how can it vary? Could you derive something useful from the data? Could
you think of other data appropriate to determine the unknown? Could you change the
unknown or the data, or both if necessary, so that the new unknown and the new data
are nearer to each other?

Did you use all the data? Did you use the whole condition? Have you taken into
account all essential notions involved in the problem?
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3. Carrying Out the Plan.

Carry out your plan.

Carrying out your plan of the solution, check each step. Can you see clearly that the
step is correct? Can you prove that it is correct?

4. Looking Back.

Examine the solution obtained.

Can you check the result? Can you check the argument?

Can you derive the result differently? Can you see it at a glance?

Can you use the result, or the method, for some other problem?
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2 Some of my Informal Thoughts on Teaching

1. Don’t neglect history. Mathematics is far, far from static. Everything you have studied
was invented, discovered, or developed at some point in the past, and sometimes not so
long ago! Many have the very strange impression that most of mathematics was finished
centuries ago and is now fixed and unchanging. For many, the idea of mathematical
research is hard to comprehend, but this should not be so. Mathematics is dynamic,
alive, and growing by leaps and bounds!

2. Look for concrete (especially physical) examples, models, or visualizations of math-
ematical concepts. Conversely, look for the mathematics in everyday objects. For
example, what can you say about the lengths of the chimes hanging beneath a xylo-
phone?

3. Be conscious of the difference between skills and concepts. Skills are sometimes more
easily learned, practiced, and tested than concepts—hence very tempting to both stu-
dents and teachers to spend most of their time on—but a math course that degenerates
into a sequence of rote skills and manipulation without any real understanding is es-
sentially worthless.

4. Practice asking lots of questions. A good question is worth a lot more than a mediocre
fact.

5. Think about analogies with learning in other disciplines—for example, learning to read,
learning how to play a musical instrument. In both cases there is an absolute necessity
for constant practice, without which it is impossible to attain any level of sophistication
or appreciation. This can be hard work! You cannot read Shakespeare if you are still
sounding out individual words letter by letter. Also, under no circumstances would I
want my first grade child to be taught to read by a teacher who could only read on
an elementary school level, or my twelfth grade child to take an English class with a
teacher who could only function on a twelfth grade level. The great teachers have a
sense of perspective on their subjects which transcends the level on which they are
teaching, and students are acutely aware of this.

6. There is a high probability that you will frequently encounter students that are more
adept mathematically than you. You must be prepared for this, or you may tragically
close doors of opportunity forever for your students.

7. Your love of mathematics should and will undoubtedly extend to activities outside of
the classroom. Great musicians love music and play music, even when they are not
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performing. Great writers do not confine their creativity to an 8-hour day.

8. You must learn how to learn new mathematics on your own, and teach your students
this crucial skill.

9. Mathematics is not a linear subject, but parts are intricately intertwined into a complex
structure. In school and college, certain strands are extracted and taught, sometimes
giving a very misleading view of mathematics as a whole. Think about ways to reweave
the mathematical fabric as you teach.

10. Some of the topics that are studied in a semester took decades, centuries, or even
millennia to come to fruition. Is it little wonder that it is hard for students to fully
comprehend some of the things we are teaching them the first time (or even the second
or third time) that they see them? A good example of this are the concepts of continuity
and differentiation in calculus. I recommend that you read about the struggle to try
to place the less formal or intuitive views of these concepts on a sound footing. How
long did it take?

11. Mathematics is an experimental subject, but the truths discovered are subject to ver-
ification in a rigorous way. All too often, the final results are presented in such a way
that is cleansed of the explanation of the process of investigation and discovery. This
is very sad, for much of value has been lost. One good example of this principle is
Archimedes’ “Method.”

12. High quality work is often hard work. Don’t cheat yourself (or others) out of the
benefits of significant accomplishment.

There are thousands of books and articles that capture the spirit of mathematics and
provide an unimaginable amount of wonderful material. I mention a few of my favorites.
There are probably newer editions of all of these.

1. All of the books by Martin Gardner on recreational mathematics and related subjects.
Most of this material was first published in the Mathematical Recreations column of
Scientific American. I grew up on this material starting in elementary school.

2. H. Steinhaus, Mathematical Snapshots, Oxford University Press. A gallery of fasci-
nating mathematical snippets.

3. G. Polya, How to Solve it, Princeton University Press. My high school teacher showed
us a movie by Polya on problem solving that made a deep and long-lasting impression
on me.
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4. W.W. Rouse Ball and H.S.M. Coxeter, Mathematical Recreations and Essays, Univer-
sity of Toronto Press, 1974. I read and reread this book as a high school student.
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3 Suggestions for Approaching Mathematics in your

Courses

Definitions. Construct examples. Make diagrams. Construct non-examples by relaxing
various conditions.

Theorems. Restate them. Make simple examples. Make complicated examples. Make di-
agrams. Test the validity of the theorem when certain of the hypotheses are relaxed.
Consider the validity of the converse. Generalize the theorem. Verbalize connections
with other mathematics in the course—how does it fit in? Consider further mathemat-
ical questions that are suggested by the existence of this theorem.

Proofs. Make outlines. Make diagrams. Construct a “sufficiently complicated example”
with which to follow along the proof.

The Course. Verbalize how the course fits together as a whole. What are the major
themes? How to the topics connect and flow together? Consider an outlining strategy:
Make detailed marginal notes from which you can reconstruct the mathematics of the
notes. Then make a coarser outline from which you can reconstruct the marginal notes.
Then make a brief outline from which you can reconstruct the coarser outline.

Study. Read the suggestions from Joy Williams and Frank Branner in http://www.ms.

uky.edu/∼math/Grad/handbook-archive/handbook-06.pdf.

7

http://www.ms.uky.edu/~math/Grad/handbook-archive/handbook-06.pdf
http://www.ms.uky.edu/~math/Grad/handbook-archive/handbook-06.pdf


4 Review of Problem Solutions

Here are some ideas for evaluating a proposed formal (e.g., written) solution to a problem.

1. Is a statement of the problem included?

2. Is the answer correct?

3. Is the method of solution valid?

4. Is the explanation clear and complete, including sufficient verbal explanation to clarify
the various steps and reasoning?

5. Is the mathematics correct?

6. Is the mathematical vocabulary correct?

7. When helpful, does the explanation make good use of such aids as diagrams, charts,
tables, etc.?

8. Is the answer doublechecked at the end?

9. Does the explanation use proper grammar and spelling?

Suggestions: Write your solution so that if you read it a year it a year from now you will
understand both the statement of the problem and your solution. Try reading the solution
out loud to yourself, or ask a friend to do this and offer feedback using the above criteria.
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5 Guessing Formulas

It should be remarked that although the principle of mathematical induction
suffices to prove the formula. . . once this formula has been written down, the
proof gives no indication of how this formula was arrived at in the first place; why
precisely the expression [n(n + 1)/2]2 should be guessed as an expression for the
sum of the first n cubes, rather than [n(n+1)/3]2 or (19n2−41n+24)/2 or any of
the infinitely many expressions of a similar type that could have been considered.
The fact that the proof of a theorem consists in the application of certain simple
rules of logic does not dispose of the creative element in mathematics, which lies
in the choice of the possibilities to be examined. The question of the origin of the
hypothesis . . . belongs to a domain in which no very general rules can be given;
experiment, analogy, and constructive intuition play their part here. But once
the correct hypothesis is formulated, the principle of mathematical induction is
often sufficient to provide the proof. Inasmuch as such a proof does not give
a clue to the act of discovery, it might more fittingly be called a verification.
—Courant and Robbins, What is Mathematics, Section I.2.4.

In this section we discuss some ways to guess formulas for sequences. (P.S. Courant and
Robbins is an excellent book to add to your personal library.)

5.1 Experimenting With Patterns

Here is a true story of a ninth-grader. He was thinking about the game of Go which is played
on a 19× 19 grid and was wondering how many intersection points there were on the board.
So he wanted to know what 192 was, but did not have a piece of paper handy. He wondered
if he could figure out how much needed to be subtracted from 202 = 400 to get 192. He
mentally envisioned the following table:

0 1 2 3 4 5 · · · 19 20
0 1 4 9 16 25 · · · ? 400

1 3 5 7 9 · · · ?

He saw that the square of n + 1 was obtained by adding 2n + 1 to the square of n. Thus
192 + 39 = 202 so 192 = 361.

Later, when he wrote this down, he recognized that he had simply rediscovered the
formula n2 + (2n + 1) = (n + 1)2, which he had seen before. But now he began to think of
something else: When going from 42 to 52 the amount added was 9, which just happened
to be a perfect square. So 42 + 32 = 52, which means that (4, 3, 5) is a Pythagorean triple.
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Might not other Pythagorean triples be found this way? They can for integer values of n for
which 2n + 1 is a perfect square. Or, working backwards, start with a perfect square m2,
set it equal to 2n + 1, solve for n, and see if n is an integer. A little reflection convinced
him that this works if and only if m is odd. In this case, n = (m2 − 1)/2 and you have the
Pythagorean triple (m, n, n + 1).

This gave him a method of generating some Pythagorean triples:

m n n + 1
3 4 5
5 12 13
7 24 25
9 40 41

He noticed that not all Pythagorean triples were generated this way; for example, the
triple (6, 8, 10) would be absent. But he realized he could make more triples using similar
formulas. For example, he could start with n2 + (4n + 4) = (n + 2)2. If 4n + 4 happened
to be a perfect square m2, then he could solve for n, getting n = (m2 − 4)/4 and the triple
(m, n, n + 2). He realized that n would be an integer if and only if m were even. So he
generated more triples:

4 3 5
6 8 10
8 15 17
10 24 25

Finally, he generalized this procedure by using the formula n2 + (2nf + f 2) = (n + f)2.
If he started with a perfect square m2, set it equal to 2nf + f 2, and solved for n, he got
n = (m2 − f 2)/(2f). If n turns out to be an integer, the Pythagorean triple (m, n, n + f)
results. By choosing any number m, running through all possibilities of f from 1 to m, he
realized that all Pythagorean triples starting with m could be found.

He wrote up this investigation as a science fair project, received the grand prize in his
school and an honorable mention in his county.

5.2 Polya’s Example

What is the maximum number of regions you can divide space up into using 7 planes? The
investigation of this type of problem, especially highlighting techniques of problem solving,
is the subject of an old film by George Polya entitled “Let us Teach Guessing,” available
from the Mathematical Association of America. I saw this film with my class in high school,
and it made a profound impression on me.
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When thinking about this problem, consider simpler problems (use fewer planes) and
analogous problems (dividing a plane up by lines or dividing a line up by points). Try to
relate the results.

In my opinion, no teacher should be without Polya’s book How to Solve It. Another
good book of his is Mathematical Discovery. Two more advanced books on problem solving
by Polya are Mathematics and Plausible Reasoning, Volume I: Induction and Analogy in
Mathematics and Mathematics and Plausible Reasoning, Volume II: Patterns of Plausible
Inference.

5.3 Some More Examples

1. What is the next term in the sequence? In each case, think of at least three different
“plausible” answers.

(a) 1, 2, 3, . . ..

(b) 1, 2, 4, . . ..

(c) 1, 2, 5, . . ..

2. What is the next term in the sequence? In each case, try to find a formula f(n) such
that the sequence is given by f(0), f(1), f(2), . . ..

(a) 0, 1, 4, 9, 16, 25, . . ..

(b) 0, 0, 6, 24, 60, 120, . . .

(c) 0, 1, 4, 11, 24, 45, . . ..

(d) 2, 7, 30, 125, 508, 2043, . . ..

(e) 1, 1, 3, 5, 11, 21, 43, . . ..

3. What is the formula?

(a) What is the maximum number of pieces into which a pancake can be cut by n
straight cuts, each of which crosses each of the others?

(b) What is the maximum number of pieces that can be produced by n simultaneous
straight cuts of a flat figure shaped like a crescent moon?

(c) How many pieces of cheesecake can be produced by n simultaneous plane cuts of
a cylindrical cake?

(d) Into how many parts can the plane be divided by intersecting circles of the same
size? Of different sizes? By intersecting ellipses of different sizes?
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(e) Into how many regions can space be divided by intersecting spheres?

(f) With an unlimited supply of toothpicks of n different colors, how many different
triangles can be formed on a flat surface, using three toothpicks for the three sides
of each triangle? (Reflections are considered different, but not rotations.) How
many different squares?

(g) How many different tetrahedra can be produced by coloring each face a solid color
and using n different colors? (Two tetrahedra are the same if they can be turned
and placed side by side so that corresponding sides match in color.) How many
cubes with n colors?

(h) What is the maximum number of pieces that can be produced by n simultaneous
plane cuts through a doughnut?

5.4 Finite Differences

Suppose you are asked to find a function f(x) such that

f(0) = −7
f ′(0) = 5
f ′′(0) = −6
f ′′′(0) = 12
f (4)(0) = 0
f (5)(0) = 0
f (6)(0) = 0

...

We might guess that the function is a polynomial of degree 3. How can we determine the
coefficients?

f(x) = c0 + c1x + c2x
2 + c3x

3

f ′(x) = c1 + 2c2x + 3c3x
2

f ′′(x) = 2c2 + 6c3x
f ′′′(x) = 6c3

f(0) = c0

f ′(0) = c1

f ′′(0) = 2c2

f ′′′(0) = 6c3

c0 = f(0)
c1 = f ′(0)
c2 = f ′′(0)/2
c3 = f ′′′(0)/6

In our example, c0 = −7, c1 = 5, c2 = −3, and c4 = 2 so f(x) = −7 + 5x− 3x2 + 2x3.
In general, if you think f(x) is a polynomial of degree m, f(x) = c0+c1x+c2x

2+· · ·+cmxm,
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then
c0 = f(0)/0!
c1 = f ′(0)/1!
c2 = f ′′(0)/2!

...
cm = f (m)(0)/m!

so

f(x) = f(0)
x0

0!
+ f ′(0)

x1

1!
+ f ′′(0)

x2

2!
+ · · ·+ f (m)(0)

xm

m!
.

What is the number of different triangles you can form on a flat surface using three
toothpicks for the three sides of each triangle, given an unlimited supply of toothpicks of n
different colors?

number of colors number of triangles
0 0
1 1
2 4
3 11
4 24
5 45
...

...

We want a formula f(n) so that

f(0), f(1), f(2), f(3), f(4), f(5), . . . = 0, 1, 4, 11, 24, 45, . . . .

Look for a pattern by subtracting these numbers from each other, making a difference table:

0 1 4 11 24 45 · · ·
1 3 7 13 21 · · ·

2 4 6 8 · · ·
2 2 2 · · ·

0 0 · · ·

Consider some known formulas:

f(n) = n2 :

0 1 4 9 16 25 · · ·
1 3 5 7 9 · · ·

2 2 2 2 · · ·
0 0 0 · · ·
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f(n) = n3 − n :

0 0 6 24 60 120 · · ·
0 6 18 36 60 · · ·

6 12 18 24 · · ·
6 6 6 · · ·

0 0 · · ·
This suggests that for our problem we seek a formula of degree 3.
Let’s call the numbers in the first row

f(0), f(1), f(2), f(3), f(4), . . .

and the numbers in the second row

f ′(0), f ′(1), f ′(2), f ′(3), f ′(4), . . .

and the numbers in the third row

f ′′(0), f ′′(1), f ′′(2), f ′′(3), f ′′(4), . . .

etc. These aren’t equal to derivatives in the sense of differential calculus, but there seems to
be a strong analogy.

f ′(n) =
f(n + 1)− f(n)

1
f ′(x) = lim

h→0

f(x + h)− f(x)

h

In differential calculus, we exploited;

function derivative
x0 0
x1 1x0

x2 2x1

x3 3x2

...
...

xk kxk−1

What is the analog for differences? Define

[n]k = n(n− 1)(n− 2) · · · (n− k + 1)︸ ︷︷ ︸
k terms
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This is sometimes called a falling factorial.

function “derivative”
1 [n]0 0 0
n [n]1 1[n]0 1

n(n− 1) [n]2 2[n]1 2n
n(n− 1)(n− 2) [n]3 3[n]2 3n(n− 1)

...
...

...
...

n(n− 1) · · · (n− k + 1) [n]k k[n]k−1 kn(n− 1) · · · (n− k + 2)

Verification:

([n]k)′ = [n + 1]k − [n]k

= (n + 1)(n)(n− 1) · · · (n− k + 2)− n(n− 1) · · · (n− k + 2)(n− k + 1)
= n(n− 1) · · · (n− k + 2) ((n + 1)− (n− k + 1))︸ ︷︷ ︸

k
= k[n]k−1.

Now we can guess formulas:

f(n) = c0 + c1[n] + c2[n]2 + c3[n]3

f ′(n) = c1 + 2c2[n] + 3c3[n]2

f ′′(n) = 2c2 + 6c3[n]
f ′′′(n) = 6c3

f(0) = c0

f ′(0) = c1

f ′′(0) = 2c2

f ′′′(0) = 6c3

c0 = f(0)
c1 = f ′(0)
c2 = f ′′(0)/2
c3 = f ′′′(0)/6

In our example,
f(0) = 0
f ′(0) = 1
f ′′(0) = 2
f ′′′(0) = 2

c0 = 0
c1 = 1
c2 = 1
c3 = 1/3

f(n) = 0 + 1[n]1 + 1[n]2 + 1
3[n]3

= n + n(n− 1) +
n(n− 1)(n− 2)

3
= n3 + 2n

3 .

Now we have a formula that we can try to prove, e.g., by induction, or directly.
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In general, fetch f(0), f ′(0), f ′′(0), . . . , f (k)(0) as the first entries of the rows of the
difference table (assuming we have reached a row of zeroes). Then

c0 = f(0)/0!
c1 = f ′(0)/1!
c2 = f ′′(0)/2!

...
ck = f (k)(0)/k!

f(n) = c0 + c1[n] + c2[n]2 + · · ·+ ck[n]k

= f(0)
[n]0

0! + f ′(0)
[n]1

1! + f ′′(0)
[n]2

2! + · · ·+ f (k)(0)
[n]k

k! .

Note that
[n]j

j!
=

n(n− 1) · · · (n− j + 1)

j(j − 1) · · · 3 · 2 · 1
=

(
n

j

)
so

f(n) = f(0)

(
n

0

)
+ f ′(0)

(
n

1

)
+ f ′′(0)

(
n

2

)
+ · · ·+ f (k)(0)

(
n

k

)
,

(taking
(

n
k

)
= 0 if n < j).

In our example,

f(n) = 0

(
n

0

)
+ 1

(
n

1

)
+ 2

(
n

2

)
+ 2

(
n

3

)
.

Here is another way of doing the same thing—via “antiderivatives.”

f ′′′′(n) = 0.

f ′′′(n) = K.

f ′′′(0) = 2 =⇒ 2 = K =⇒ f ′′′(n) = 2 = 2[n]0.

f ′′(n) = 2[n]1 + L.

f ′′(0) = 2 =⇒ 2 = L =⇒ f ′′(n) = 2[n]1 + 2[n]0.

f ′(n) = [n]2 + 2[n]1 + M.

f ′(0) = 1 =⇒ 1 = M =⇒ f ′(n) = [n]2 + 2[n]1 + [n]0.

f(n) =
1

3
[m]3 + [n]2 + [n]1 + N.
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f(0) = 0 =⇒ 0 = N.

f(n) =
1

3
[n]3 + [n]2 + [n]1.

and you can verify that this is equal to 2
(

n
3

)
+2

(
n
2

)
+
(

n
1

)
, which is the formula we had found

before.

5.5 Exponentials

What about the following sequence?

2 7 30 125 508 2043 · · ·
5 23 95 383 1535 · · ·

18 72 288 1152 · · ·

If we take quotients of entries in the last row instead of differences, we see that every quotient
is 4. So f ′′(n) is a geometric, not an arithmetic sequence (as in our earlier examples).

f ′′(n) = 18 · 4n.

What is the “antiderivative” of 4n? Maybe we can figure this out if we can determined the
“derivative” of 4n.

4n+1 − 4n = 4n(4− 1) = 3 · 4n.

So the “antiderivative” of 4n is 1
3
4n.

Now we can find a formula for the sequence.

f ′′(n) = 18 · 4n

f ′(n) = 6 · 4n + K

f ′(0) = 5 =⇒ 5 = 6 + K =⇒ K = −1 =⇒ f ′(n) = 6 · 4n − [n]0

f(n) = 2 · 4n − [n]1 + L

f(0) = 2 =⇒ 2 = 2 + L =⇒ L = 0 =⇒ f(n) = 2 · 4n − n

This method works in general if f (k)(n) is geometric.
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5.6 Using Series

Playing around with series can give more techniques. Remember how to figure out the
formula for geometric series like

h(x) = 1 + 2x + (2x)2 + (2x)3 + · · ·

h(x) = 1 + 2x + (2x)2 + (2x)3 + · · ·
−2xh(x) = −2x− (2x)2 − (2x)3 − · · ·

(1− 2x)h(x) = 1

h(x) =
1

1− 2x
= (1− 2x)−1

We can keep this in mind as we tackle a “Fibonacci”-like sequence:

1 1 3 5 11 21 43 · · ·
0 2 2 6 10 22 · · ·

2 0 4 4 12 · · ·
−2 4 0 8 · · ·

We never seem to get a row of zeroes. The second row “looks like” twice the first row;
i.e., f(n + 1) = f(n) + 2f(n − 1) for n ≥ 1. (The ordinary Fibonacci sequence satisfies
f(n + 1) = f(n) + f(n− 1).)

Let define a power series using f(n) as the coefficient of xn:

g(x) = 1 + x + 3x2 + 5x3 + 11x4 + · · ·

The relationship f(n + 1)− f(n)− 2f(n− 1) = 0 suggests:

g(x) = 1 + x + 3x2 + 5x3 + 11x4 + · · ·
−xg(x) = −x− x2 − 3x3 − 5x4 − · · ·

−2x2g(x) = −2x2 − 2x3 − 6x4 − · · ·

(1− x− 2x2)g(x) = 1

g(x) =
1

−2x2 − x + 1

Remember, f(n) is the coefficient of xn. Let’s try to find it.

g(x) =
1

−2x2 − x + 1
=

1

(1− 2x)(1 + x)
=

2/3

1− 2x
+

1/3

1 + x
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We did the last step using the method of partial fractions. Continuing,

= (2/3)(1− 2x)−1 + (1/3)(1 + x)−1

(2/3)(1 + 2x + (2x)2 + (2x)3 + · · ·
+(1/3)(1− x + x2 − x3 + · · ·

since we have geometric series.
So the coefficient of xn is

(2/3)2n + (1/3)(−1)n

and this is our guess for the formula for f(n).
Exercise: Derive a formula for the ordinary Fibonacci sequence this way.

5.7 Using Matrices

Let’s look at the previous sequence 1, 1, 3, 5, 11, 21, 43, . . . another way. Make vectors out of
pairs of adjacent elements,[

1
1

] [
1
3

] [
3
5

] [
5
11

]
· · ·

and find a matrix that transforms each vector into the next, using the “Fibonacci” nature
of the sequence. [

0 1
2 1

] [
1
1

]
=

[
1
3

]
[

0 1
2 1

] [
1
3

]
=

[
3
5

] [
0 1
2 1

]2 [
1
1

]
=

[
3
5

]
[

0 1
2 1

] [
3
5

]
=

[
5
11

] [
0 1
2 1

]3 [
1
1

]
=

[
5
11

]
In general, [

0 1
2 1

]n [
1
1

]
=

[
f(n)

f(n + 1)

]
Let

A =

[
0 1
2 1

]
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and calculate An by diagonalizing A

eigenvalues eigenvectors

2

[
1
2

]

−1

[
1

−1

]

A

[
1 1
2 −1

]
=

[
1 1
2 −1

] [
2 0
0 −1

]

A =

[
1 1
2 −1

] [
2 0
0 −1

] [
1 1
2 −1

]−1

= SDS−1

An = (SDS−1)(SDS−1) · · · (SDS−1)

= SDnS−1

=

[
1 1
2 −1

] [
2n 0
0 (−1)n

] [
1 1
2 −1

]−1

=

[
1 1
2 −1

] [
2n 0
0 (−1)n

] [
1/3 1/3
2/3 −1/3

]
So

An

[
1
1

]
=

[
1 1
2 −1

] [
2n 0
0 (−1)n

] [
1/3 1/3
2/3 −1/3

] [
1
1

]

=

[
(2/3)2n + (1/3)(−1)n

(4/3)2n − (1/3)(−1)n

]

=

[
f(n)

f(n + 1)

]
Therefore

f(n) =
2

3
2n +

1

3
(−1)n.

Exercise: Try to derive a formula for the ordinary Fibonacci sequence this way.
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5.8 Illustrating and Discovering Some Formulas Geometrically

Define
S0(n) = n + 1

and

Sk(n) =
n∑

i=1

ik.

We have proved formulas for Sk(n) when k is small, but what about finding formulas for
higher values of k? Is there any systematic way to do this?

1. Dissect an (n + 1) × (n + 1) square into (n + 1)2 smaller squares in the natural way.
Now color these smaller squares to justify the following formula geometrically:

(n + 1)2 = 2S1(n) + S0(n).

Use this to derive a formula for S1(n).

2. Dissect an (n+1)× (n+1)× (n+1) cube into (n+1)3 small cubes in the natural way.
Try to color these smaller cubes to get a formula relating S0(n), S1(n), and S2(n). Use
this to derive a formula for S2(n).

3. Try to guess a generalization of the relationship you discovered from the colorings of
the square and the cube.

4. Consider the following list of equations:

(1 + 0)k = 1

(1 + 1)k = 1 +
(

k
1

)
11 +

(
k
2

)
12 + · · ·+

(
k
k

)
1k

(1 + 2)k = 1 +
(

k
1

)
21 +

(
k
2

)
22 + · · ·+

(
k
k

)
2k

(1 + 3)k = 1 +
(

k
1

)
31 +

(
k
2

)
32 + · · ·+

(
k
k

)
3k

...

(1 + n)k = 1 +
(

k
1

)
n1 +

(
k
2

)
n2 + · · ·+

(
k
k

)
nk

Sum these equations and use this to prove that

(n + 1)k =
k−1∑
i=0

(
k

i

)
Si(n).

5. Use the above to find formulas for S3(n), S4(n), and S5(n).
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5.9 References and Resources

There are many articles and books on the calculus of finite differences. One nice one is:
Martin Gardner, The calculus of finite differences, in Martin Gardner’s New Mathematical
Diversions from Scientific American, Simon and Schuster, New York, 1971, chapter 20.

If you have a sequence and you are trying to figure out what the rule is, or if the sequence
is already known elsewhere, the unbeatable place to turn to is the website for the On-Line
Encyclopedia of Integer Sequences, http://oeis.org.

Many summation formulas can be found with WolframAlpha. For example, type

sum i^5, i=1,...,n

and the result is
n∑

i=1

i5 =
1

12
n2(n + 1)2(2n2 + 2n− 1).
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