5 Angles

5.1 The Angle Axioms and Basic Theorems

The following is a summary of Section 2.7 of Kay.

- Axiom A-1 Existence of Angle Measure: To every angle $\angle A$ there corresponds a unique, real number $\theta = m \angle A$, $0 < \theta < 180$, called its *measure*.
- Axiom A-2 Angle Addition Postulate: If D lies in the interior of $\angle ABC$, then $m \angle ABC = m \angle ABD + m \angle DBC$, and conversely.
- Axiom A-3 Protractor Postulate: The set of rays having a common origin O and lying on one side of line $\ell = \overrightarrow{OA}$, including ray \overrightarrow{OA} , may be assigned to the real numbers θ for which $0 \le \theta < 180$, called *coordinates*, in such a manner that
 - 1. Each ray is assigned a unique coordinate θ .
 - 2. Each coordinate θ is assigned to a unique ray.
 - 3. The coordinate of \overrightarrow{OA} is 0.
 - 4. If rays \overrightarrow{OP} and \overrightarrow{OQ} have coordinates θ and ϕ , respectively, then $m \angle POQ = |\theta \phi|$.

Definition: Suppose that \overrightarrow{OA} , \overrightarrow{OB} , and \overrightarrow{OC} are concurrent rays, all having the same endpoint O. Then if these rays are distinct (no two are the same ray), and if $m \angle AOB + m \angle BOC = m \angle AOC$, then \overrightarrow{OB} is said to lie between \overrightarrow{OA} and \overrightarrow{OC} , and we write $\overrightarrow{OA} - \overrightarrow{OB} - \overrightarrow{OC}$.

Notation: Write A[a] if a is the coordinate of a point A under the Ruler Postulate. Write $\overrightarrow{OA}[a]$ if a is the coordinate of a ray \overrightarrow{OA} under the Protractor Postulate.

Theorem 2.7.1: If A[a], B[b], and C[c] are three collinear points (and $\overrightarrow{OA}[a]$, $\overrightarrow{OB}[b]$, $\overrightarrow{OC}[c]$ three concurrent rays) with their coordinates, then A-B-C (\overrightarrow{OA} - \overrightarrow{OB} - \overrightarrow{OC}) if and only if a < b < c or c < b < a. (This is Theorem 1 of Kay, Section 2.7.)

Corollary: Suppose that four distinct collinear points are given with their coordinates: A[a], B[b], C[c], D[d]. If A-B-C and A-C-D, then A-B-C-D, and similarly for rays $\overrightarrow{OA}[a], \overrightarrow{OB}[b], \overrightarrow{OC}[c], \overrightarrow{OD}[d]$.

Lemma: A segment, ray, or line is a convex set.

Lemma: If A and B are two distinct points, and $C \in \overrightarrow{AB}$, with $A \neq C$, then $\overrightarrow{AB} \subseteq \overrightarrow{AC}$.

Theorem 2.7.2: If $C \in \overrightarrow{AB}$ and $A \neq C$, then $\overrightarrow{AB} = \overrightarrow{AC}$. (This is Theorem 2 of Kay, Section 2.7.)

Theorem 2.7.3 (Segment Construction Theorem): If \overline{AB} and \overline{XY} are any two segments and $AB \neq XY$, then there is a unique point C on ray \overrightarrow{AB} such that AC = XY, with A-C-B if XY < AB, or A-B-C if XY > AB. (This is Theorem 3 of Kay, Section 2.7.)

Definition: A point M on a segment \overline{AB} is called a *midpoint* if it has the property that AM = MB. Such a midpoint is also said to *bisect* the segment, and any line, segment, or ray passing through that midpoint is also said to *bisect* the segment.

Theorem 2.7.4 (Midpoint Construction Theorem): The midpoint of any segment exists and is unique. (This is Theorem 4 of Kay, Section 2.7.)

Theorem 2.7.5 (Segment Doubling Theorem): There exists a unique point C on ray \overrightarrow{AB} such that B is the midpoint of \overline{AC} . (This is Theorem 5 of Kay, Section 2.7.)

Definition: A ray \overrightarrow{OM} such that $\overrightarrow{OA} \cdot \overrightarrow{OM} \cdot \overrightarrow{OB}$ is said to be an *angle bisector* of $\angle AOB$ if $m \angle AOM = m \angle OMB$. Any line or ray containing an angle bisector is said to *bisect* the angle.

Theorem 2.7.3' (Angle Construction Theorem): If $\angle ABC$ and $\angle XYZ$ are any two nondegenerate angles and $m \angle ABC \neq m \angle XYZ$, then there exists a unique ray \overrightarrow{BD} on the *C*-side of \overrightarrow{AB} such that $m \angle XYZ = m \angle ABD$, and either $\overrightarrow{BA} - \overrightarrow{BD} - \overrightarrow{BC}$ if $m \angle XYZ < m \angle ABC$, or $\overrightarrow{BA} - \overrightarrow{BC} - \overrightarrow{BD}$ if $m \angle XYZ > m \angle ABC$. (This is Theorem 3' of Kay, Section 2.7.)

Theorem 2.7.4' (Angle Bisection Theorem): Every angle has a unique bisector. (This is Theorem 4' of Kay, Section 2.7.)

Theorem 2.7.5' (Angle Doubling Theorem): Given any angle $\angle ABC$ having measure < 90, there exists a ray \overrightarrow{BD} such that \overrightarrow{BC} is the bisector of $\angle ABD$. (This is Theorem 5' of Kay, Section 2.7.)

5.2 More Theorems on Angles

This is a summary of Section 2.8 of Kay.

Theorem 2.8.1 (Crossbar Theorem): If D is in the interior of $\angle BAC$, then ray \overrightarrow{AD} meets segment \overrightarrow{BC} at some interior point E. (This is Theorem 1 of Kay, Section 2.8.)

Definition: If A-B-C then \overrightarrow{BA} and \overrightarrow{BC} are called *opposite rays*.

Lemma: For every ray \overrightarrow{PQ} there exists a unique opposite ray.

Definition: If the sides of one angle are opposite rays to the respective sides of another angle, the angles are said to form a *vertical pair*.

Definition: Two angles are said to form a *linear pair* iff they have one side in common and the other two sides are opposite rays. We call any two angles whose angle measures sum to 180 a *supplementary pair*, or more simply, *supplementary*, and two angles whose angle measures sum to 90 a *complementary pair*, or *complementary*.

Theorem 2.8.2: Two angles which are supplementary (or complementary) to the same angle have equal angle measures. (This is Theorem 2 of Kay, Section 2.8.)

Axiom A-4: A linear pair of angles is a supplementary pair.

Theorem 2.8.3 (Vertical Pair Theorem): Vertical angles have equal measures. (This is Theorem 3 of Kay, Section 2.8.)

Definition: If line ℓ intersects another line m at some point A and forms a supplementary pair of angles at A having equal measures, then ℓ is said to be *perpendicular* to m, and we write $\ell \perp m$.

Definition: An angle having measure 90 is called a *right angle*. Angles having measure less than 90 are *acute angles*, and those with measure greater than 90, *obtuse angles*.

Theorem 2.8.4: One line is perpendicular to another line iff the two lines form four right angles at their point of intersection. (This is Theorem 4 of Kay, Section 2.8.)

Corollary: Line ℓ is perpendicular to line m iff ℓ and m contains the sides of a right angle.

Theorem 2.8.5 (Existence and Uniqueness of Perpendiculars): Suppose that in some plane line m is given an an arbitrary point A on m is located. Then there exists a unique line ℓ that is perpendicular to m at A. (This is Theorem 5 of Kay, Section 2.8.)