Transformation Matrices

1. Translation by the vector (p,q).
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Note: If (p,q) = (0,0), then this is just the identity matrix.

2. Counterclockwise rotation by the angle ¢ about the point (p, q).
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where ¢ = cosd and s = sin §.

Note: If 6 = 0, then this is just the identity matrix.

3. Reflection across the line px + qy = r, where without loss of generality we can assume
p? +¢* = 1. IMPORTANT: Before applying this formula, rescale the equation of the
line, if necessary. If the equation of the line is ax + by = ¢, first divide through by
Va2 + b? to get the equation in the form pz + qy = r in which p* + ¢* = 1.
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4. Glide reflection across the line px + qy = r using the translation (tg, —tp), where
without loss of generality we can assume p* + ¢> = 1. IMPORTANT: Before applying
this formula, rescale the equation of the line, if necessary. If the equation of the line is
ar+by = ¢, first divide through by v/a? + b? to get the equation in the form pr+qy = r
in which p? + ¢* = 1.
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Note: If ¢ = 0 then this is just a pure reflection.



