## MA109, Activity 13: Increasing and Decreasing Functions; (Section 3.3, pp. 237-243) Average Rate of Change

Today's Goal: Functions are often used to model changing quantities. We learn how to determine if a function is increasing or decreasing, and how to find the rate at which its values change as the variable change.

Assignments:

Homework (Sec. 3.3): # 1, 4, 13, 15, 17, 19, 22, 31, 33 (pp. 244-246).

# ▶ Increasing and Decreasing Functions:

A function f is said to be increasing when its graph rises and decreasing when its graph falls. More precisely, we say that:

f is **increasing** on an interval I if  $f(x_1) < f(x_2)$  whenever  $x_1 < x_2$  in I.



f is increasing

f is decreasing on an interval I if  $f(x_1) > f(x_2)$  whenever  $x_1 < x_2$  in I.



f is decreasing



f is increasing on the intervals [a,b] and [c,d]f is decreasing on the interval [b, c].

## Example 1:

The picture shows a rough graph of the temperature T of the water from a faucet as a function of the time tthat has elapsed since the faucet was turned on.

40

On which intervals is this function increasing?

Where is it decreasing?

Where is it constant?

constant: [4,12], [20,24] decreusing: [12,20]



## Example 2:

Graph the function  $f(x) = x^2 - 4$ . State the intervals on which f is increasing and on which f is decreasing.



## ► Average Rate of Change:

We are all familiar with the concept of speed: If you drive a distance of 120 miles in two hours, then your average speed, or rate of travel, is 120/2 = 60 miles per hour. In other words, the average speed is equal to the ratio of the distance traveled over the time elapsed:

$$average \ speed = \frac{distance \ traveled}{time \ elapsed}$$

Finding average rates of change is important in many contexts. For instance, we may be interested in knowing how quickly the air temperature is dropping as a storm approaches, or how fast revenues are increasing from the sale of a new product. The average rate of change of the function y = f(x) between x = a and x = b is

average rate of change = 
$$\frac{\text{change in } y}{\text{change in } x} = \frac{f(b) - f(a)}{b - a}$$

The average rate of change is the slope of the **secant line** between x = a and x = b on the graph of f, that is, the line that passes through (a, f(a)) and (b, f(b)).



## Example 3:

Consider the function h(x) = 3x - 2. Find the average rate of change of the function between x = 2 and x = 4.

$$\frac{h(4) - h(2)}{4 - 2} = \frac{h(4) - h(2)}{2} = \frac{3(4) - 2 - 3(2) + 2}{2}$$

$$= \frac{12 - 2 - 6 + 2}{2} = \frac{6}{2} = 3 = \frac{6 \log e}{4}$$

$$\frac{h(4) - h(2)}{2} = \frac{h(4) - h(2)}{2} = \frac{3(4) - 2 - 3(2) + 2}{2}$$

$$= \frac{12 - 2 - 6 + 2}{2} = \frac{6}{2} = 3 = \frac{6 \log e}{4}$$

$$\frac{h(4) - h(2)}{2} = \frac{h(4) - h(2)}{2} = \frac{3(4) - 2 - 3(2) + 2}{2}$$

## Example 4:

this the difference quotient Consider the function  $g(x) = \frac{2}{x}$ . Find the average rate of change of the function between x = a and x = a + h.

$$\frac{g(a+h)-g(a)}{a+h-a} = \frac{g(a+h)-g(a)}{h} = \frac{3 \log \lambda}{a(a+h)} = \frac{-2h}{a(a+h)}$$

Stepl g(a) = 
$$\frac{2}{q}$$
 g(at  
g(ath) =  $\frac{2}{a+h}$   
Example 5: ath

$$g(a+h)-g(a) = \frac{2}{a+h} - \frac{2}{a} = \frac{2a}{a(a+h)} - \frac{2ca+h}{a(a+h)}$$

$$= \frac{-2h}{a(a+h)}$$
from a tall building then the distance it by

If an object is dropped from a tall building, then the distance it has fallen after t seconds is given by the function  $d(t) = 16t^2$ . Find its average speed (average rate of change) over the following intervals:

(a) between 
$$t = 1$$
 and  $t = 5$  seconds;

$$\frac{d(5)-d(1)}{5-1} = \frac{16(5)^{2}-16(1)^{2}}{4}$$

$$= \frac{400-16}{4}$$

$$= \frac{384}{4} = 96$$
Example 6:

(b) between 
$$t = a$$
 and  $t = a + h$  seconds.

$$\frac{d(a+h)-d(a)}{a+h-q} = \frac{16(a+h)^2-16(a)^2}{h}$$

$$= \frac{16a^2+32ah+16h^2-16}{h}$$

$$= \frac{32ah+16h^2}{h}$$

$$= \frac{32ah+16h^2}{h}$$

The graph shows the depth of water W in a reservoir over a one-year period, as a function of the number of days t since the beginning of 100 the year.



(a) increasing [0,150], [300,365] -100 200 300  $t ext{ (days)}$ decreasing [650, 300]

$$\frac{(5) W(200) - W(00)}{200 - 100} = \frac{50 - 75}{100} = \frac{-25}{100}$$
Example 7:

By looking at Example 3, what can you conclude about the Rate of Change of a linear function y = mx + bbetween any two points  $x_0$  and  $x_1$ ?

Detween any two points 
$$x_0$$
 and  $x_1$ ?

$$f(x) = mx + b$$

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function  $y = mx + b$ 

$$f(x) = mx + b = any linear function function  $y = mx + b$ 

$$f(x) = mx + b = any linear function function function function  $y = mx + b$ 

$$f(x) = mx + b = any linear function functio$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$