MA109, Activity 13: Increasing and Decreasing Functions; (Section 3.3, pp. 237-243)
Average Rate of Change Date:

Bday)s Goa@ Functions are often used to model changing quantities. We learn how to
determine if a function is increasing or decreasing, and how to find the
rate at which its values change as the variable change.

,Assignments: Homework (Sec. 3.3):‘ #1, 4, 13, 15, 17, 19, 22, 31, 33 (pp. 244-246).

> Encreasing and Decreasing Functiori—:]

A function f is said to be increasing when its graph rises and decreasing when its graph falls.
More precisely, we say that:

[ is increasing on an interval J if f is decreasing on an interval I if
f(z1) < f(z2) whenever 1 < z9in I. f(x1) > f(z2) whenever z; < Zo in I.
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[ is increasing on the intervals [a,b] and [c,d]

[ is decreasing on the interval b, c].
Example 1:

The picture shows a rough graph of the temperature T of the water from a faucet as a function of the time ¢
that has elapsed since the faucet was turned on.

On which intervals is this function increasing?
Where is it decreasing?

Where is it constant?
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Graph the function f (z) = 22 — 4. State the intervals on which f is increasing and on which [ is decreasing.
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The average rate of change of the function y = f(z) be-
tween z =a and 2 = b is

> ,iverage Rate of Changa

We are all familiar with the concept of speed:

changeiny  f(b) - f(a)

If you drive a distance of 120 miles in two average rate of change = — =
change in z b—a
hours, then your average speed, or rate of
travel, is 120/2 = 60 miles per hour. In other The average rate of change is the slope of the secant line
words, the average speed is equal to the ratio between x = a and = = b on the graph of f, that is, the line

of the distance traveled over the time elapsed: that passes through (a, f(a)) and (b, f(b)).

distance traveled Yy
average speed = ——— —~ """
time elapsed
f(b)+
Finding average rates of change is important
in many contexts. For instance, we may be in-
terested in knowing how quickly the air tem-
perature is dropping as a storm approaches, fla)l
or how fast revenues are increasing from the d \/.'
sale of a new product. :
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Example 3:

Consider the function h(z) = 3z — 2. Find the average rate of change of the function between = = 2 and  — 4.
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Example 4:
2
Consider the function g(z) = =. Find the average yate of change of the function between r = q and z — a+h.
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If an object is dropped from a tall building, then the distance it has fallen after t seconds is given by the
function d(t) = 16t2. Find its average speed (average rate of change) over the following intervals:

(a) between t = 1 and t = 5 seconds; (b) between ¢ = a and t = a + h seconds.
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The graph shows the depth of water W in a reservoir over a, one-year
period, as a function of the number of days ¢ since the beginning of 1001

the year.
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(a) Determine the intervals on which the function W is increasing

and on which it is decreasing. 50 1
) p— — R — ./d/tztx)';
<~ (b) What was the average rate of change of W between ¢t = 100
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By looking at Example 3, what can you conclude about the Rate of Change of a linear function y=mx+b
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