MA109, Activity 19: Dividing Polynomials (Section 4.2, pp. 325-331) Date:

Bday’s Goal:| So far we have been Studying polynomial functions graphically. We now begin
to study polynomials algebraically. Most of our work will be concerned

with factoring polynomials, and to factor, we need to know how to divide
polynomials.

Homework (Sec. 4.2): # 1,3,5,11,13,19,22,27,31,36, 43,53 (pp. 331-332).
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Given the integers 23 and 5 we can ‘divide’ one by the other. We obtain: 5= 4+ - or 23=4-5+3.
In general, if a and b are non-zero integers, then there exist unique integers q and r such that

a=qg-b+r and 0<r<|py,

where g is the quotient and r the remainder. This is the usual ‘long division’ familiar from elementary arithmetic.
Example 1:| Divide 63 by 12.
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> ‘—E)ng Division of Polynomialsq Dividing polynomials is much like the familiar process of dividing num-
bers. This process is the long division algorithm, for polynomials.

[Bivision Algorithmq If P(z) and D(z) are polynomials, with D(z) # 0, then there exist unique polyno-
mials Q(z) and R(z), where R(z) is either 0 or of degree strictly less than the degree of D(z), such that

P(z) = Q(z) - D(z) + R(z)

The polynomials P(z) and D(z) are called the dividend and divisor, respectively; Q(z) is the quotient
and R(z) is the remainder.

Example 2:| Divide the polynomial Divide the polynomial

Plz)=22> -z -4 by D(z) =z -3. Plz)=z"-2% 442+ 2 by D(z) = 2% + 3.
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Example 4:

Find the quotient Q(z) and the remainder R(z) when f(z) = 323 4 222 — 2 + 3 is divided by g(z) =z — 4.
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Find the quotient Q(z) and the remainder R(z) when f(z) = 25 — 423 4 2 is divided by g(z) =z + 3.
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> Ehe Remainder and Factor Theorem@ _.(-‘i‘ ‘:‘X + 138 / 2,(,%) .
Next, we see how synthetic division can be used to evaluate pom"‘%‘ggL

Bemainder TheoremTI J’

If the polynomial P(z) is divided by z — ¢, then the remainder is the value P(c).

Proof: If the divisor D(z) is of the form z — ¢, then the remainder MUST be a constant R. Thus
P(z) =Q(z) (z - ¢) + R.
Setting = ¢ in the above equation gives that P(c) = Q(c) -0+ R = R. Thus

P(2) = Q) - (x - o) + P(e) |

From the boxed equation we obtain our next theorem, which says that the zeros of a polynomial correspond to
the linear factors of the polynomial.

LFactor TheoremT‘

The number ¢ is a zero of P(z) if and only if z — ¢ is a factor of P(z)
that is, P(z) = Q(z) - (z — ¢) for some polynomial Q(z).

Example 6:| Let P(z) = 23 + 222 — 7

(a) Find the quotient and the remainder when P(z) is divided by z + 2.
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Use the Factor Theorem to determine whether z + 2 is a factor of f(z) = 328 + 243 — 176.
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Find a polynomial of degree 3 that has zeros 1, =2, and 3, and in which the coefficient of z2 is 3.
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Let P(z) = 22 + 322 — 172 — 30. = —%x1+3xz+§ix"‘ﬁ .

* Is 3 a zero of P(x)? What does this tell you about the factors of P(z)?
What does it tell you about the graph of y= P(x)?

* Is 2 a zero of P(z)? What does this tell you about the factors of P(z)?
What does it tell you about the graph of y = P(x)?
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The graph of a polynomial has z-intercepts at (2,0) and (—5,0). What does this tell you about the polynomial?
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