MA109, Activity 24: Logarithmic Functions (Section 5.2, pp. 398-405) Date:

tl"oday’s Goal:] We study the inverse of exponential functions, that is, logarithmic functions.

Homework (Sec. 5.2): # 1,3,6,7,10,12,14,17,19,23,29,35,37,41,44,59,61

(pp. 406-408) .

> LLogarithmiC Functior;y Every exponential function f(z) = a®, with a > 0 and a # 1, is a one-to-one
function by the Horizontal Line Test. Thus, it has an inverse function (see Activity 17). The inverse function
f~Hz) is called the logarithmic function with base a and is denoted by log, .

In other words, log, x is the exponent to which the base
Let a be a positive number with a must be raised to give T.
a # 1. The logarithmic function with base a,

denoted by log,, is defined by LPropertles of Logarlthr@
1. loga 1=0 3. loga a® =1
y=log,z <= a¥=nr.
2. log,a=1 4. gt =4
Example 1:| Change each exponential expression into an equivalent expression in logarithmic form:
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Example 2:| Change each logarithmic expression into an equivalent expression in exponential form:

2
log; 81 =4 logg 4 = 3 log,(z —3) =2
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Example 3:|Evaluate each of the following expressions:
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If a one-to-one function f has domain A and range B, then its inverse function /7! has domain B and range
A. THUS, the function y = log, z is defined for z > 0 and has range equal to R. More precisely:

> lGraphs of Logarithmic Functions:,

The graph of f~!(z) = log,  is obtained by reflecting the graph of f(z) = a® in the line y = .
(The picture below shows a typical case with a > 1.)
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The point (1,0) is on the graph of y = log, « (as log, 1 = 0) and the y-axis is a vertical asymptote.

Example 4:| Find the domain of the function  f(z) =logs(z +2) and sketch its graph.
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> I Common Logarithms: J

The logarithm with base 10 is called the common logarithm and is denoted by omitting the base:

log z := log, m—’

Eﬂxample 5 (Bacteria Colony):y

A certain strain of bacteria divides every three hours. If a colony is started with 50 bacteria, then the time ¢
(in hours) required for the colony to grow to N bacteria is given by

fo3 log(N/50)
N log2

Find the time required for the colony to grow to a million bacteria.
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> [Natural Logarithmsq Of all possible bases a for logarithms, it turns out that the most convenient
choice for the purposes of Calculus is the number e (see Activity 23)

The logarithm with base e is called the natural

logarithm and is denoted by In:

[Properties of Natural Logarithms:]

1. In1=0 3. lef=¢
We recall again that, by the definition of inverse functions, we 2. lne=1 4. ez g
have ) '
y=Inz = eV =1
Example 6:| Evaluate each of the following expressions:
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Example 7:| Graph the function y =2+ In(z — 3).
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Example 8:| Find the domain of the function f(z) = 2+ In(10 + 3z — z?).
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