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MA109, Activity 3: Quadratic Equations (Section 1.3, pp. 97-105) Date:

Bday’s Goal:] We learn how to solve quadratic (or second-degree) equations.

Homework (Sec. 1.3): # 1, 8, 13, 19, 23, 29, 38, 43, 71, 75, 79, 89, 91

(pp- 105-108) .

A quadratic equation is an equation of the form:

az? +br+c=0

where a,b, and c are real numbers with a # 0.

lZero—Product Propertyq For any A,B € R: AB =0 if and only if A=0or B=0.
Solve the following equations by factoring:
e r2-T7x+12=0 e 222 =2+3
(x-3){x4)=0 -1 -3 =0
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> [Solving Quadratic Equations by Completing the Square:l Z 'f' 1 30, G_:_'l_i

If a quadratic equation is of the form rGeometric Interpretation of Completing the Square:]

This interpretation goes back to the Babylonian scribes,
who fully used the “cut-and-paste” geometry developed

lve it by taking th ¢ of each by the ancient surveyors (ca. 1700 BC). Here, z and b are
we can solve it by taking the square root of eac positive as they represent lengths:

. . b
side. So, if a quadratic equation does not factor T+ =

(et a)® =4,

readily ... we solve it by completing the square! ’ b —
“ny
[Completing the Square: I To make a per-
fect square out of z2 + bz, add the square of I b
half the coefficient of z, that is (b/2)2. Thus: T+
z? + br + b " . :
2] — 2 where D is a square of side b/2; E

thus its area is (b/2)2.

Solve each equation by completing the square:

e 24+4x - 6=0 e 3x2—62-1=0
2 \
X ilx = 6 X"AX"'x‘:U
2. = 3
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x+1 = 10’ I A
<1 % 2
X = -2 rooX A




We can use the technique of completing the
square to derive a formula for the general

quadratic equation:

ar’ +brx+c=0
(where a # 0). We obtain the following:
> ‘The Quadratic Formuhil

The roots z; and x4 of the quadratic equation
azr® + bz + ¢ = 0, where a # 0, are:

—-b+ Vb? - 4ac

Iy, T2 = %2a

Find all solutions of each equation:

032 +7c+4=0

Proof:

ar! +br+e=0
i

g2+ -z =
4]

()

LA
2q0)  a
211

b —dac + b?
(”5‘) T

i
b2 — dac
=t
2 2a

~b+ Vb2 - 4dac

2a

a

2, b (
°+ -+
a

¢ 2245t +3=0

N :, PR ‘ x; ;
XX, i - 4 ' EYEY
2(7:) x'/”a = =-S5+
x =311 -
é -
'X‘._:'?f“‘ = -1 ’j)():__..—-
..’L‘:l——% .9+_§_%‘0
Xz x-4 -
- Iy +3x -A=0
2 -
X‘xu\-o — s [T
X0, = 7 - 4 ty) _,-————-)i o
) ) KRS X T N
v (, -1
\& x \% crx_l

X)'-—' ir E

> Nbo RCEAL
Rce 1S

X nz(-3 £9) [ig

» [The Discriminant: |

The discriminant D of the quadratic
equation ax? + bz + ¢ = 0, where a # 0, is:

D = b% - dac
1. If D > 0 the eq. has 2 distinct real roots.

2. If D = 0 the eq. has exactly 1 real root.

3. If D < 0 the eq. has no real roots.

Example 4:| Use the discriminant’to determine how many
real roots each equation has. Do not solve the equation.
322 -52+1=0
TSt Y
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i > 1 REAL SclUTTIeN

Find all values of k that ensure that the equation

‘(\‘7(\%“0 kz® + 36z + k=0 H=©
o= 362400
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has exactly one root (solution).
2 0
= 3 -k
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> ﬁ\/[odelmg with Quadratic Equations: J
The principles discussed in Activity 2 for setting up equations as models are useful here as well.

[Example 6 (Dimension of a Lot):| A parcel of land is 6 ft longer than it is wide. Each diagonal from one
corner to the opposite one is 174 ft long. What are the dimensions of the parcel'? X K _-n A quaoes !
]
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lExample 7 (Falling-Body Problem)J “ ;;(V\fq\ Sieas A(q XJ": "{\‘) 6
: ' (O.xens:m

An object is thrown straight upward at an initial speed of 400 | 2o x1ab
ft/s. From Physics, it is known that, after t seconds, it reaches a y descentj;’:.“
height of h feet given by the formula: ascent T Pos. ;‘,,e)

h = —16t% + 400t.
(a) When does the object fall back to ground level? . h
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