Date: _____

Today's Goal:

We learn how to solve quadratic (or second-degree) equations.

Assignments:

Homework (Sec. 1.3): # 1, 8, 13, 19, 23, 29, 38, 43, 71, 75, 79, 89, 91 (pp. 105-108).

A quadratic equation is an equation of the form:

$$ax^2 + bx + c = 0$$

where a, b, and c are real numbers with $a \neq 0$.

Zero-Product Property:

For any $A, B \in \mathbb{R}$:

AB = 0 if and only if

A=0 or B=0

Example 1: Solve the following equations by factoring:

•
$$x^2 - 7x + 12 = 0$$

$$(x-3)(x-4)=0$$

 $x-3=0$, $[x=3]$

$$X-4=0$$
, $X=4$

• $2z^2 = z + 3$

$$22^{3} - 2 - 3 = 0$$
 $(22 - 3)(2 + 1) = 0$
 $22 - 3 = 0$
 $(2 = \frac{3}{2})$

► Solving Quadratic Equations by Completing the Square:

he Square: Z + 1 = 0, Z = -1

If a quadratic equation is of the form

$$(x\pm\alpha)^2=\beta,$$

we can solve it by taking the square root of each side. <u>So</u>, if a quadratic equation does not factor readily ... we solve it by completing the square!

Completing the Square: To make a perfect square out of $x^2 + bx$, add the square of half the coefficient of x, that is $(b/2)^2$. Thus:

$$x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2$$

Geometric Interpretation of Completing the Square:

This interpretation goes back to the Babylonian scribes, who fully used the "cut-and-paste" geometry developed by the ancient surveyors (ca. 1700 BC). Here, x and b are positive as they represent lengths:

Example 2: Solve each equation by completing the square:

•
$$x^2 + 4x - 6 = 0$$

$$\chi^{2} + 4x = 6$$
 $\chi^{2} + 4x + 4 = 6 + 4$
 $(\chi + \lambda)^{2} = 10$
 $\chi + \lambda = \pm 10$
 $\chi = -2 \pm 10$

•
$$3x^2 - 6x - 1 = 0$$

$$x^{3}-3x-\frac{1}{3}=0$$
 $x^{3}-3x=\frac{1}{3}=0$
 $x^{3}-3x=\frac{1}{3}=0$
 $(x-3)^{3}=\frac{1}{3}+1$
 $(x-1)^{3}=\frac{1}{3}+1$
 $(x-1)^{3}=\frac{1}{3}+1$
 $(x-1)^{3}=\frac{1}{3}+1$
 $(x-1)^{3}=\frac{1}{3}+1$

We can use the technique of completing the square to derive a formula for the general quadratic equation:

$$ax^2 + bx + c = 0$$

(where $a \neq 0$). We obtain the following:

► The Quadratic Formula:

The roots x_1 and x_2 of the quadratic equation $ax^2 + bx + c = 0$, where $a \neq 0$, are:

$$x_1,x_2=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

Example 3: Find all solutions of each equation:

$$x_{1}, x_{2} = \frac{-\frac{7}{4} \pm \sqrt{\frac{7}{4}^{2} - 4(3)(4)}}{2(3)}$$

$$x_{1}, x_{2} = \frac{-\frac{7}{4} \pm \sqrt{\frac{1}{4}}}{6}$$

$$x_{3} = \frac{-\frac{7}{4} \pm \frac{1}{4}}{6}$$

$$x_{4} = \frac{-\frac{7}{4} \pm \frac{1}{4}}{2} = \frac{-\frac{8}{4}}{6}$$

$$x_{5} = \frac{-\frac{7}{4} \pm \frac{1}{4}}{2} = \frac{-\frac{8}{4}}{6}$$

$$x_{1}, x_{2} = \frac{1}{4} \pm \sqrt{\frac{1}{4}^{2} - 4(1)(4)}}{2(1)}$$

$$x_{1}, x_{3} = \frac{1}{4} \pm \sqrt{\frac{1}{4}^{2} - 4(1)(4)}}{2(1)}$$

$$x_{1}, x_{2} = \frac{1}{4} \pm \sqrt{\frac{1}{4}^{2} - 4(1)(4)}}{2(1)}$$

$$x_{2} = \frac{1}{4} \pm \sqrt{\frac{1}{4}^{2} - 4(1)(4)}}{2(1)}$$

$$x_{3} = \frac{1}{4} \pm \sqrt{\frac{1}{4}^{2} - 4(1)(4)}}{2(1)}$$

$$x_{4} = \frac{1}{4} \pm \sqrt{\frac{1}{4}^{2} - 4(1)(4)}}{2(1)}$$

$$x_{4} = \frac{1}{4} \pm \sqrt{\frac{1}{4}^{2} - 4(1)(4)}}{2(1)}$$

$$x_{5} = \frac{1}{4} \pm \sqrt{\frac{1}{4}^{2} - 4(1)(1)}}{2(1)}$$

$$x_{5} = \frac{1}{4} \pm \sqrt{\frac{1}{4}^{2} - 4(1)}}{2(1)}$$

► The Discriminant:

The discriminant D of the quadratic equation $ax^2 + bx + c = 0$, where $a \neq 0$, is:

$$D = b^2 - 4ac$$

- 1. If D > 0 the eq. has 2 distinct real roots.
- 2. If D = 0 the eq. has exactly 1 real root.
- 3. If D < 0 the eq. has no real roots.

$$ax^{2} + bx + c = 0$$

$$x^{2} + \frac{b}{a}x = -\frac{c}{a}$$

$$x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} = -\frac{c}{a} + \left(\frac{b}{2a}\right)^{2}$$

$$\left(x + \frac{b}{2a}\right)^{2} = \frac{-4ac + b^{2}}{4a^{2}}$$

$$x + \frac{b}{2a} = \pm \frac{\sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

•
$$2t^2 + 5t + 3 = 0$$
 $x_1, x_2 = -5 \pm 18^2 - 4(3)(3)$
 $X_1, x_3 = -5 \pm 1$
 $Y_1 = -5 + 1$
 $Y_2 = -5 + 1$
 $Y_3 = -5 + 1$
 $Y_4 = -1$

• $9 + \frac{3}{x} - \frac{2}{x^2} = 0$
 $Y_4 + 3 \times -\lambda = 0$
 $Y_5 \times -\frac{3}{x^2} = \frac{3 \pm \sqrt{9 - 4(4)(3)}}{3(4)}$
 $Y_4, Y_3 = -\frac{3 \pm \sqrt{9 - 4(4)(3)}}{3(4)}$
 $Y_4, Y_3 = -\frac{3 \pm \sqrt{9 - 4(4)(3)}}{3(4)}$
 $Y_4, Y_3 = -\frac{3 \pm \sqrt{9 - 4(4)(3)}}{3(4)}$
 $Y_4, Y_5 = -\frac{3 \pm \sqrt{9 - 4(4)(3)}}{3(4)}$
 $Y_4, Y_5 = -\frac{3 \pm \sqrt{9 - 4(4)(3)(3)}}{3(4)}$

Example 4: Use the discriminant to determine how many real roots each equation has. Do not solve the equation.

0=(5)3-4(3)(1)

 $\bullet \ 3x^2 - 5x + 1 = 0$

$$0 = 13$$

$$13 > 0 \Rightarrow 2 \text{ (eal roots)}$$

$$x^2 = 6x - 10$$

$$\chi^2 - 6x + 10 = 0 \qquad -4 \le 0$$

$$0 = (-6)^2 - 4(1)(10)$$

$$0 = 36 - 40$$

$$0 = -4$$

Example 5:

Find all values of k that ensure that the equation

$$h^{0} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{2}$$

$$kx^{2} + 36x + k = 0$$

$$0 = 0 \Rightarrow 1 REAL SOLUTION$$

has exactly one root (solution).

$$0 = 36^{2} - 4(k)(k)$$

$$0 = 36^{2} - 4k^{3}$$

▶ Modeling with Quadratic Equations:

The principles discussed in Activity 2 for setting up equations as models are useful here as well.

Example 6 (Dimension of a Lot): A parcel of land is 6 ft longer than it is wide. Each diagonal from one

$$(x+b)^{2} = C^{2}$$

$$(x+b)^{2} + x^{3} = 174^{3}$$

$$x_{1}x_{2} = \frac{-13 \pm 492}{4}$$

$$x_{1}x_{2} = \frac{-13 \pm 492}{4}$$

$$x_{2}^{2} + 13x + 3C + x^{3} = 174^{3}$$

$$x_{1}^{2} + 13x + 3C + x^{3} = 174^{3}$$

$$\chi^{2} + 10x + 36 + x^{3} = 174$$

$$3x^{3}+13x-30340=0$$
 $x_{1}=\frac{1377110}{4}=100$

Dimensions Are $x_{2}=\frac{1377110}{4}=100$

peed of 400 130 x 136

Example 7 (Falling-Body Problem):

An object is thrown straight upward at an initial speed of 400 ft/s. From Physics, it is known that, after t seconds, it reaches a height of h feet given by the formula:

$$h = -16t^2 + 400t.$$

(a) When does the object fall back to ground level?

$$h = 0$$

$$0 = -16t^{2} + 400t$$

$$X_{11}X_{1} = \frac{-400 + \sqrt{400^{2} - 4(76)10}}{3(-16)}$$

$$x_1, x_2 = \frac{-400 + \sqrt{400^3}}{-32}$$

$$X_{1}X_{2} = \frac{-400 \text{ r} \sqrt{400^{2} - 4(10)/6}}{2(-16)}$$

$$X_{1}X_{2} = \frac{-400 \text{ r} \sqrt{400^{2} - 4(10)/6}}{32}$$
(b) When does it reach a height of 1,600 ft?

$$C = -16t^{3} + 400t - 1600$$

$$X_{1}X_{2} = \frac{-400 \pm \sqrt{400^{3} - 4(-16)(-1600)}}{2(-16)}$$

$$\frac{X_{1}X_{2}}{(c) \text{ When does it reach a height of 1 mi?}}$$

$$\frac{-32}{32}$$

$$(1 \text{ mi} = 5,280 \text{ ft})$$

$$(1 \text{ mi} = 5,280 \text{ ft})$$

$$11$$
? $(1 \text{ mi} = 5,280 \text{ ft})$

$$\chi_{1,\lambda_{1}} = \frac{-1(c) t}{-177920}$$
(d) How high is the highest point the object reaches?

Discriminant = 0