		. 7
MA109 — College Algebra Final Exam	Fall 2015 2015-12-16 Name:	sheiled KEY Sec.:
No books or notes may be used.	You may use an ACT-approved bra System (CAS), networking,	n. You have two hours to do this exam. d calculator during the exam, but NO or camera is permitted. Absolutely no
100		swers on this page. For each multiple the correct answer. For example, if (a)
	make it CLEAR which response b	ach correct response in the body of the has been chosen. You will not get credit in the body of the exam.
	GOOD LUCK!	
1. a b c d e	9. (a) (b) (c) (d) (e)	17. (a) (b) (c) (d) (e)
2. (a) (b) (c) (d) (e)	10. (a) (b) (c) (d) (e)	18. (a) (b) (c) (d) (e)
3. a b c d e	11. (a) (b) (c) (d) (e)	19. (a) (b) (c) (d) (e)
4. (a) (b) (c) (d) (e)	12. (a) (b) (c) (d) (e)	20. (a) (b) (c) (d) (e)
5. a b c d e	13. (a) (b) (c) (d) (e)	21. (a) (b) (c) (d) (e)
6. (a) (b) (c) (d) (e)	14. (a) (b) (c) (d) (e)	22. (a) (b) (c) (d) (e)
7. (a) (b) (c) (d) (e)	15. (a) (b) (c) (d) (e)	23. (a) (b) (c) (d) (e)
8. a b c d e	16. (a) (b) (c) (d) (e)	
	For grading use:	

Number	(ia.
Correct	(out of 20 problems)

Total (out of 100 points)

Name:	

Multiple Choice Questions

Show all your work on the page where the question appears. Clearly mark your answer both on the cover page on this exam and in the corresponding questions that follow.

-4	α 1		C		2.0
1.	Sol	ve	tor	7	in:

each factor and salve. * factored equation $(4r-36)(r^2-25)=0$

Should use ZERO PRODUCTE

Possibilities: PROPERTY to Solve

- (a) The only real solutions are 9 and ± 5 .
- (b) The only real solutions are 4 and 25.
- (c) The only real solutions are ± 5 .
- (d) The only real solutions are 36 and 25.
- (e) The only real solutions are 4 and 0.

Possibilities:

(a)
$$3x^2 - 2x - 8 = 16$$

(b)
$$|2x| = -6$$

(c)
$$3x^2 - 6 = 0$$

(d)
$$4(6-x) = 12$$

(e)
$$\frac{4}{x} + 2 = \frac{1}{x - 5}$$

3. Let

* Must Find f(4).

Possibilities:

$$(a) -13$$

$$f(4) = -2(4) - 5$$

4. Solve for z. * Cannot factor

$$2z^2 - 9z + 3 = 0$$

Possibilities:

(a)
$$\frac{-9 \pm \sqrt{57}}{4}$$

(b)
$$\frac{-9 \pm \sqrt{105}}{4}$$

$$Z = -(-9) \pm \sqrt{(-9)^2 + 4(2)(3)}$$

(c)
$$\frac{9 \pm \sqrt{105}}{4}$$

d)
$$9 \pm \sqrt{57}$$

(e)
$$\frac{9}{4} \pm \sqrt{75}$$

$$Z = \frac{9 \pm \sqrt{57'}}{4}$$

5. Write the given expression as a single logarithm.

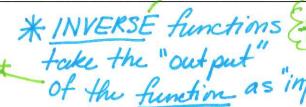
* Power Prot

 $3\log(x) + \log(4y) - \log(9z)$

* Product Proper

Possibilities:

(a)
$$\log \left(\frac{x^3(4y)}{9z} \right)$$


(b)
$$\log (3x(4+y) - 9 - z)$$

(c)
$$\log (3x + 4y - 9z)$$

(d)
$$\log\left(\frac{x^3y^4}{z^9}\right)$$

(e)
$$\log (x^3 y^4 z^9)$$

6. Let $f(x) = 4^x$. Which of the following is $f^{-1}(64)$?

Possibilities:

(e)
$$\frac{1}{16}$$

inverse input

- 7. The number of bacteria in a culture is modeled by the function $n(t) = 60e^{0.3t}$ where t is measured in hours. When will the number of bacteria reach 2500? Round your answer to the nearest hundredth * Set function equal to of an hour. 2500 = 60 e 2500 and solve Possibilities: (a) About 13.15 hours
 - (b) About 51.09 hours
 - (c) About 12.43 hours (d) About 5.40 hours
 - (e) About 3.73 hours
- 8. Find an equation for the line through the points (-4,7) and (5,12).
 - * Requestion of a line requires SLOPE! $m \Rightarrow \frac{Ay}{Ax} \Rightarrow \frac{y_2 y_1}{x_3 x_4} = \frac{12 7}{5 (-4)} = \frac{5}{9}$ Possibilities: (a) $y-7=\frac{5}{9}(x+4)$
 - (b) $y-4=-\frac{9}{5}(x-7)$
 - (c) $y+7=\frac{5}{9}(x-4)$ * with a point & slope use PT. SLOPE FORM
 - (d) $y-5=\frac{5}{9}(x-12)$ (e) $y - 12 = -\frac{9}{5}(x - 5)$
- 9. Which of the following statements best describes the system of equations?
- Possibilities: or Coma
 - (a) The system is dependent. Two solutions to the system are (4,3) and (2,2). One point that is NOT a solution to the system is (1,1).

 - (b) The system is inconsistent. Therefore the system has no solutions. (c) The system is consistent. It has exactly one solution which is (1,6).
 - (d) The system is dependent. Every point is a solution to the system.
 - (e) The system is dependent. Two solutions to the system are (1,1) and (7,8). One point that is NOT a solution to the system is (0,0).

me slopes &

11. Let $f(x) = 3x^2 - 1$. Find $f(x+h) - f(x)$ and simplify. (Assume $h \neq 0$.) Possibilities: (a) $18x + 9h$ (b) $\frac{6xh + 3h^2 - 2}{h}$ (c) 1 (d) $3h$ (e) $6x + 3h$ (e) $6x + 3h$ 12. Let $g(x) = \sqrt{x^2 - 4}$. Find the domain of $g(x)$. Possibilities: (a) $[2, \infty)$ (b) $(-\infty, -2] \cup [2, \infty)$ (c) $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$ (d) $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$ (e) $(2, \infty)$ (f) $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$ (g) $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$ (e) $(2, \infty)$	10. A merchant wants to mix peanuts that cost \$1.50 per problems and pounds of a nut mixture that costs \$2.90 per problems. Possibilities: (a) 4.5 pounds (b) 20.8 pounds (c) 32.7 pounds (d) 113.1 pounds (e) 15.6 pounds **Eliminate** C' since poblems **Allower Problems **Problems **Allower Problems **Problems **Allower Problems **Problems **Allower Problems **Problems **Allower Problems **Al	per pound. How many pounds of peanuts are $(P + C = 39) \times -7.50$ $(P + C = $
Possibilities: $ * Need to find f(xh) $	11. Let $f(x) = 3x^2 - 1$. Find $f(x+h) - f(x)$ and simplify	7. (Assume $h \neq 0$.)
12. Let $g(x) = \sqrt{x^2 - 4}$. Find the domain of $g(x)$. Possibilities: (a) $[2, \infty)$ (b) $(-\infty, -2] \cup [2, \infty)$ (c) $(-\infty, -2) \cup (2, \infty)$ (d) $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$ (e) $(2, \infty)$ (f) $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$ (e) $(2, \infty)$ (f) $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$ (g) $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$ (h) $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$ (e) $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$	Possibilities: (a) $18x + 9h$ (b) $\frac{6xh + 3h^2 - 2}{h}$ (c) 1 (d) $3h$ Need to find $f(x+h)$ Plug $x+h$ in h $f(x+h)$	$f(x+h) = 3(x+h)^{2} - 1$ $= 3(x^{2} + 2xh + h^{2}) - 1$ $= 3x^{2} + 6xh + 3h^{2} - 1$
Possibilities: $\frac{1}{2}$ Possibilities: $\frac{1}$		P(x) = 8xh-13h2 4(6x+3h) = 6x+3h
Possibilities: \star eWn roots require (a) $[2,\infty)$ (b) $(-\infty,-2]\cup[2,\infty)$ (b) $(-\infty,-2)\cup(2,\infty)$ (c) $(-\infty,-2)\cup(-2,2)\cup(2,\infty)$ (d) $(-\infty,-2)\cup(-2,2)\cup(2,\infty)$ (e) $(2,\infty)$	12. Let $q(x) = \sqrt{x^2 - 4}$. Find the domain of $q(x)$.	set expression ≥0
(a) $[2,\infty)$ $non-negative Values$ (b) $(-\infty,-2]\cup[2,\infty)$ $under the vort (-\infty,-2)\cup(2,\infty) (c) (-\infty,-2)\cup(2,\infty) (d) (-\infty,-2)\cup(-2,2)\cup(2,\infty) (e) (2,\infty)$	Possibilities: * even roots requ	ive ~ > ~ 24>0
(b) $(-\infty, -2] \cup [2, \infty)$ (and the point of t	(a) $[2,\infty)$ non-negative va	lues 2
(d) $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$ (e) $(2, \infty)$ (f) $(+)$ (g) $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$ (e) $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$ (f) $(+)$ (g) $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$	(b) $(-\infty, -2] \cup [2, \infty)$ under the root	1 NON THEY (X+ 2)(X-4) = 0
$(e) (2,\infty)$ $(-\infty,-2] U [2,\infty)$	(c) $(-\infty, -2) \cup (2, \infty)$	positive regions
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$		V+). \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
	(c) (2, co)	min
5	(A) 2	\$\((-\omega, -2]U[2,\omega)
	5	

The next three problems refer to the same function.

$$P(x) = x^3 - 11x^2 + 32x - 28$$

- Possibilities: # If P(c) = 0, then (x-c) is a factor. P(c)13. Which of the following is a factor of P(x)? (See the top of the page.) $P(1) = |3 - 11(1)^2 + 32(1) - 28 = |-11 + 32 - 28 = -6 \Rightarrow 0$ (a) (x-1)P(5) = 53-11(5)2+32(5)-28=125-275+160-28=-18 \$\frac{1}{20}\$ (b) (x-5)P(4) = 43-11(4)2+32(4)-28=64-176+128-28=-12=0 (c) (x-4)(3)2+32(3)-28=27-99+96-28=-4=0 (d) (x-3)(e) (x-2)
- P(2)=23-11(2)=+32(2)-28=8-44+64-28=10 Since P(2) = 0, then (x-2) must be a factor.
- 14. Determine the end behavior of the graph of y = P(x). (See the top of the page.) *end behavior of a poly

Possibilities:

- (a) $y \to -\infty$ as $x \to \infty$ and $y \to -\infty$ as $x \to -\infty$ determined by
- (b) $y \to \infty$ as $x \to \infty$ and $y \to \infty$ as $x \to -\infty$
- (c) $y \to \infty$ as $x \to \infty$ and $y \to -\infty$ as $x \to -\infty$
- (d) $y \to -\infty$ as $x \to \infty$ and $y \to \infty$ as $x \to -\infty$
- (e) No solution

(a) 194

(b) 74x - 28

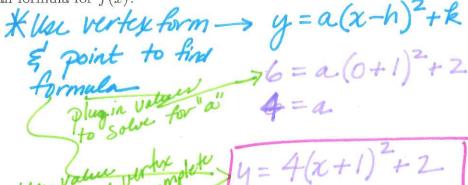
- 15. Find the remainder of the division problem $\frac{P(x)}{x+3}$. (See the top of the page.)
 - Possibilities:
 - emainder Theorem: P(c) = remainder of

3 7 add degree

- rewrite divisor in form
- (c) $x^2 1$ $(-3)^2 + 32(-3) - 28$ (d) -28
- -99-96-28 (e) -250

16. Suppose the graph of y = f(x) is a parabola with vertex (-1, 2) and goes through the points (0, 6). Which of the following is an formula for f(x)?

Possibilities:


(a)
$$f(x) = 4(x+2)^2 - 1$$

(b)
$$f(x) = 4(x+1)^2 + 2$$

(c)
$$f(x) = (x-1)^2 + 2$$

(d)
$$f(x) = (x+2)(x+3)$$

(e)
$$f(x) = (x+1)(x+6)$$

17. Solve for x.

 $6\log_4(x+5) = 12$

divide away 6 first *rewrite in exponential form

Possibilities:

(a)
$$x = \sqrt[6]{12}$$

(b)
$$x = \frac{12}{6\log(4)}$$

(c)
$$x = 11$$

(d)
$$x = -4.5$$

(e)
$$x = 0$$

loga(X+5) = 12

$$4^2 = x + 5^2$$

and solve

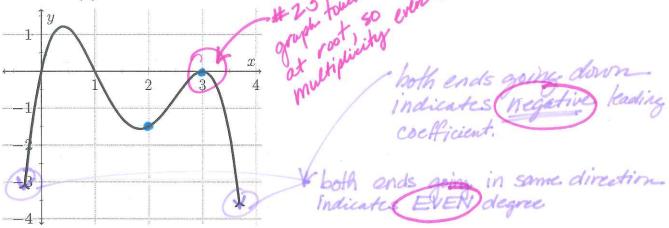
18. Let $P(x) = 7x^{50} + 4x^{40} - 31x^{30} + 3x^{20} + 4$. List all possible rational zeros of P(x) given by the Rational Zeros Theorem (but do not check to see which are actually zeros) frectors of as Possibilities:

(a) ± 1 , ± 4 , $\pm 7/4$ $a_{2} = 4 \implies factors$: ± 1 , ± 2 , ± 4 , ± 1 ,

(a)
$$\pm 1, \pm 4, \pm 7/4$$

(b)
$$\pm 1$$
, $\pm 1/2$, $\pm 1/4$, ± 7 , $\pm 7/2$, $\pm 7/4$

(c)
$$\pm 1$$
, ± 2 , ± 4 , $\pm 1/7$, $\pm 2/7$, $\pm 4/7$


(d)
$$\pm 1$$
, ± 2 , ± 4 , ± 7 , $\pm 7/2$, $\pm 7/4$

(e)
$$\pm 1$$
, ± 4 , $\pm 4/7$

$$a_n = 7 \Rightarrow factors: \pm 1, \pm 7$$

19. When a high school basketball team charges p dollars per ticket, the total revenue R from ticket sales is given by the formula
$R(p) = 2160p - 120p^2.$
What is the team's maximum revenue? $(p) = -120 p^2 + 2160p$
What is the team's maximum revenue? (p) = -120 p ² + 2160 p Possibilities: ** Maximum's occur at vertex of quadratic
(a) \$10360 (b) \$9
(d) \$9720 Max Revenue Revenue
(e) \$9980
=-9720+19440
= \$97201
20. Let $r(x) = \frac{x+4}{x+7}$. Find the asymptotes of r. \cancel{X} \cancel{V} \cancel{A} occur at zeros in denominating
20. Let $r(x) = \frac{x+4}{x+7}$. Find the asymptotes of r . X VA occur at zeros in denominating Possibilities:
(a) The vertical asymptote is $x = -7$ and the horizontal asymptote is $y = -4$.
(b) The vertical asymptote is $x = 1$ and the horizontal asymptote is $y = -7$.
(c) The vertical asymptote is $x = -4$ and the horizontal asymptote is $y = -7$.
(d) The vertical asymptote is $x = -4$ and the horizontal asymptote is $y = 1$.
(e) The vertical asymptote is $x = -7$ and the horizontal asymptote is $y = 1$.
$HA: \frac{\chi}{\chi} = \Rightarrow y = 1 \text{ is } HA.$
21. Explain how the graph of $g(x) = (x+5)^2 - 8$ is obtained from the graph of $f(x) = x^2$. Possibilities:
Possibilities: Taffeets input a lingut affects are
(a) Shift the graph of f right 5 units and shift up 8 units to obtain the graph of g .
(b) Shift the graph of f left 5 units and shift down 8 units to obtain the graph of g .
(c) Shift the graph of f right 5 units and shift down 8 units to obtain the graph of g .
(d) Shift the graph of f right 8 units and shift up 5 units to obtain the graph of g .
(e) Shift the graph of f left 8 units and shift down 5 units to obtain the graph of g .
output affects are intuitive -> so, down 8

The next two problems refer to the graph shown. In the picture below, the graph of the polynomial function P(x) is shown.

22. For the graph of the polynomial P(x) drawn above, which of the following can you conclude about P?

**End behavior of graph determined by leading

Possibilities:

- (a) The degree of the polynomial is odd and the leading coefficient is negative.
- (b) The parity (even or odd) of the degree of the polynomial or the sign of the leading coefficient can not be determined by the graph.
- (c) The degree of the polynomial is even and the leading coefficient is positive.
- (d) The degree of the polynomial is odd and the leading coefficient is positive.
- (e) The degree of the polynomial is even and the leading coefficient is negative.
- - (I) (x+1) is a factor of P(x) No x-intercept x=-1
 - (II). When P(x) is divided by (x-2) the remainder is six.
 - (III). x = 3 is a root with even multiplicity.

Possibilities:

- (a) Only statements (I) and (II) are true.
- (b) None of the statements are true.
- (c) Only statement (III) is true.
- (d) Only statement (II) is true.
- (e) Statements (I), (II), and (III) are all true.

With even by while multiplicity while with plicity

Formula Sheet:

Compound Interest: If a principal P_0 is invested at an interest rate r for a period of t years, then the amount P(t) of the investment is given by:

$$P(t) = P_0 \left(1 + \frac{r}{n}\right)^{nt}$$
 (if compounded *n* times per year)

 $P(t) = P_0 e^{rt}$ (if compounded continuously).

Change of Base Formula: Let a and b be two positive numbers with $a, b \neq 1$. If x > 0, then:

$$\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$$