MA109 — College Algebra Exam 3	Fall 2019 2019-11-13	Name:	Sec.:
No books or notes may be used	. You may use ebra System (C.	an ACT-approved calc	u have two hours to do this exam. culator during the exam, but NO mera is permitted. Absolutely no
answer questions on the back of this page. For each multiple choi- answer. For example, if (a) is con	this page, and ce question, you erect, you must	record your answers to will need to fill in the owrite (c) (d) (e)	hoice questions. Answer the short the multiple choice questions on circle corresponding to the correct prect response in the body of the
	make it CLEAF	R which response has be	een chosen. You will not get credit
	GO	OD LUCK!	
3. (a) (b)	(c) (d) (e)	12. (a) (b)	(c) (d) (e)
4. (a) (b)	(c) (d) (e)	13. (a) (b)	(c) (d) (e)
5. (a) (b)	(c) (d) (e)	14. (a) (b)	(c) (d) (e)
6. (a) (b)	(c) (d) (e)	15. (a) (b)	(c) (d) (e)

For grading use:

16. (a)

17. (a)

18. (a)

19. (a)

20. (a)

(b)

(b)

(b)

(b)

(b)

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 (\mathbf{d})

 (\mathbf{e})

 (\mathbf{e})

 (\mathbf{e})

 (\mathbf{e})

 (\mathbf{e})

Multiple Choice	Short Answer
(number right) (5 points each)	(out of 10 points)

7. (a)

8. (a)

9. (a)

10. (a)

11. (a)

(b)

(b)

 (\mathbf{b})

(b)

(b)

(c)

(c)

 \bigcirc

 (\mathbf{c})

(c)

 \bigcirc

 \bigcirc

 (\mathbf{d})

 \bigcirc

 $\left(\mathbf{d}\right)$

 (\mathbf{e})

 (\mathbf{e})

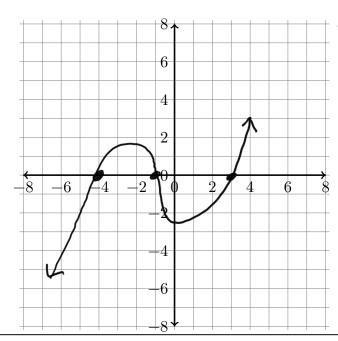
 (\mathbf{e})

(c)

 (\mathbf{c})

 (\mathbf{c})

 \bigcirc


 (\mathbf{c})

Short Answer Questions

Each question is an opportunity to earn 5 points. Points are earned on the clarity and correctness of your explanation, not merely on having a correct answer somewhere.

1. Sketch a graph of the given function. Be sure that it is clear where your x-intercepts are located, and show proper multiplicities, degree, and end behavior.

$$f(x) = \frac{1}{5}(x+4)(x+1)(x-3)$$

Roots at x=-4, x=-1, x=3 Degree 3, positive coefficient

2. Find a formula for the inverse of the function $f(x) = \sqrt{7+4x}$ and state the domain of $f^{-1}(x)$.

$$y = \sqrt{7 + 4x}$$

$$x = \sqrt{7 + 4y}$$

$$x^{2} = \sqrt{7 + 4y}$$

$$x^{2} = 7 + 4y$$

$$x^{2} - 7 = 4y$$

$$y = \frac{x^{2} - 7}{4}$$

Domain of
$$f^{-1}$$
 range of f .

$$\begin{array}{lll}
X = \sqrt{7 + 4y} \\
X^{2} = \sqrt{7 + 4y}
\end{array}$$
Since $f(x) = \sqrt{7 + 4y}$

$$\begin{array}{lll}
X = \sqrt{7 + 4y} \\
X^{2} = 7 + 4y
\end{array}$$
The range of $f(x) = \sqrt{7 + 4y}$

$$\begin{array}{lll}
X = \sqrt{7 + 4y} \\
X^{2} = 7 + 4y
\end{array}$$
The range of $f(x) = \sqrt{7 + 4y}$

$$\begin{array}{lll}
X = \sqrt{7 + 4y} \\
X^{2} = 7 + 4y
\end{array}$$
So the domain of $f^{-1}(x)$ is $y = \frac{x^{2} - 7}{4}$

Name:

Multiple Choice Questions

Show all your work on the page where the question appears. Clearly mark your answer both on the cover page on this exam and in the corresponding questions that follow.

3. What is the leading term of $444 + 6x^{22} + 9x^7 + 88x^5 + 3x$?

Possibilities:

- (a) $6x^{22}$
- (b) 444
- (c) 3x
- (d) $9x^7$
- (e) $88x^5$

4. Which of the following best describes the end behavior of $f(x) = -9x^{88} + 7x^6$?

Possibilities:

(a)
$$y \to 0$$
 as $x \to -\infty$ and

and
$$y \to 0$$
 as $x \to \infty$

(b)
$$y \to -\infty$$
 as $x \to -\infty$ and $y \to \infty$ as $x \to \infty$

and
$$y \to \infty$$
 as $x \to \infty$

(c)
$$y \to -\infty$$
 as $x \to -\infty$ and $y \to -\infty$ as $x \to \infty$

and
$$y \to -\infty$$
 as $x \to \infty$

(d)
$$y \to \infty$$
 as $x \to -\infty$

and
$$y \to \infty$$
 as $x \to \infty$

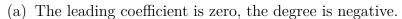
(e)
$$y \to \infty$$
 as $x \to -\infty$

and
$$y \to -\infty$$
 as $x \to \infty$

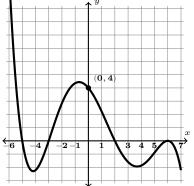
5. Suppose a polynomial has $x = \frac{13}{11}$ as a root. Which of these must be a factor of the polynomial?

(a)
$$(x+2)$$

(b)
$$(\frac{13}{11}x)$$


(c)
$$(13x - 11)$$

(d)
$$(x-2)$$


(e)
$$(11x - 13)$$

6. Let f(x) be the polynomial whose graph is given below. All of the roots of the polynomial are shown. What can be said about the leading coefficient and degree of the polynomial?

Possibilities:

- (b) The leading coefficient is positive, the degree is even.
- (c) The leading coefficient is negative, the degree is even.
- (d) The leading coefficient is negative, the degree is odd.
- (e) The leading coefficient is positive, the degree is odd.

7. Refer to the graph from problem 6. Which of these cannot be factors of the polynomial in the graph?

Possibilities:

(a)
$$(x-2)$$

(b)
$$(x-4)$$

(c)
$$(x+3)$$

(d)
$$(x+5)$$

(e)
$$(x-6)$$

8. Refer to the graph from problem 6. Which root of the polynomial has even multiplicity?

(a)
$$x = 2$$

(b)
$$x = -5$$

(c)
$$x = 6$$

(d)
$$x = -3$$

(e)
$$x = 4$$

9. Let

$$s(x) = \frac{8x - 120}{5x^2 - 25x + 20}$$

The graph of y = s(x) has an x-intercept at:

Possibilities:

- (a) x = 6
- (b) $x = \frac{8}{5}$
- (c) x = 4
- (d) x = 0
- (e) x = 15
- 10. Let

$$s(x) = \frac{8x - 120}{5x^2 - 25x + 20}$$

The graph of y = s(x) has vertical asymptotes at:

Possibilities:

- (a) x = 15 only
- (b) x = 0 only
- (c) x = 1, x = 4, and x = 15
- (d) x = 1 only
- (e) x = 1 and x = 4
- 11. Let

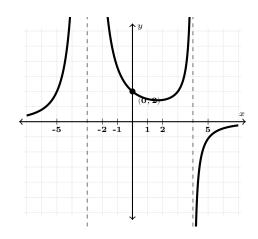
$$s(x) = \frac{8x - 120}{5x^2 - 25x + 20}$$

The graph of y = s(x) has a horizontal asymptote at:

- (a) y = 15
- (b) y = 6
- (c) y = 0
- (d) y = 4
- (e) $y = \frac{8}{5}$

12. Which of the following is most reasonable as the equation of the following graph:

Possibilities:


(a)
$$f(x) = \frac{-72}{(x+3)^2(x-4)}$$

(b)
$$f(x) = \frac{1}{(x+3)(x-4)^2}$$

(c)
$$f(x) = \frac{72}{(x-3)^2(x+4)}$$

(d)
$$f(x) = \frac{-96}{(x-3)(x+4)^2}$$

(e)
$$f(x) = \frac{2}{(x+3)^2(x+4)}$$

13. Find all real distinct solutions x to $\sqrt{x-6}+4=8$

(a)
$$x = 8$$
 only

(b)
$$x = 22$$
 only

(c)
$$x = 54$$
 only

(d)
$$x = 64$$
 and $x = -64$

(e)
$$x = 64$$
 only

14. Let f(x) be a one-to-one function such that f(8) = 16. What is $f^{-1}(16)$?

Possibilities:

- (a) $f^{-1}(16) = \frac{1}{16}$
- (b) $f^{-1}(16) = 8$
- (c) $f^{-1}(16) = 128$
- (d) $f^{-1}(16) = 16$
- (e) $f^{-1}(16) = 0$

15. Let f(x) be a one-to-one function with domain [-3,39). What is the range of $f^{-1}(x)$?

- (a) $(-\infty, \infty)$
- (b) $(-\infty, -3) \cup [39, \infty)$
- (c) [3, 39)
- (d) [-3, 39)
- (e) (-39, -3]

16. Let $f(x) = \sqrt[5]{2x+8} + 7$. What is the formula for $f^{-1}(x)$?

Possibilities:

(a)
$$f^{-1}(x) = \sqrt[5]{2x+15}$$

(b)
$$f^{-1}(x) = \frac{x - 49575}{2}$$

(c)
$$f^{-1}(x) = \frac{(x-7)^5 - 8}{2}$$

(d)
$$f^{-1}(x) = \frac{(x-8)^5 - 7}{2}$$

(e)
$$f^{-1}(x) = \frac{7 \pm \sqrt[5]{x-8}}{2}$$

17. Let $f(x) = \frac{8x}{9x+7}$. What is the formula for $f^{-1}(x)$?

(a)
$$f^{-1}(x) = \frac{7x}{8 - 9x}$$

(b)
$$f^{-1}(x) = \frac{7x}{9x+8}$$

(c)
$$f^{-1}(x) = \frac{8x}{9x - 7}$$

(d)
$$f^{-1}(x) = \frac{9x+7}{8x}$$

(e)
$$f^{-1}(x) = \frac{8}{9}x + 7$$

18. Find a value b > 0 so that the graph of the exponential function $f(x) = b^x$ contains the point $(3, \frac{1}{216})$.

Possibilities:

- (a) $b = \sqrt{3}$
- (b) b = 6
- (c) b = 3
- (d) $b = \frac{1}{6}$
- (e) b = 1

19. Find an exponential function that satisfies f(0) = 7 and f(1) = 77.

Possibilities:

- (a) $f(x) = 7 \cdot 77^x$
- (b) $f(x) = 77 \cdot 7^x$
- (c) $f(x) = 11 \cdot 7^x$
- $(d) f(x) = 7 \cdot 11^x$
- (e) $f(x) = 70^x$

20. A weekly census of the tree-frog population in Frog Hollow State Park produces the following results.

Week:	1	2	3	4	5	6
Frogs:	50	100	200	400	800	1600

Which exponential growth model most closely matches the observations, if t is the week number?

- (a) $50(4^t)$
- (b) $25(2^t)$
- (c) $25\left(4^{(t/7)}\right)$
- (d) $2\left(50^{(t/7)}\right)$
- (e) $2(50^t)$

MA: Exan		- Colle	ege Algebra	Fall 2019 2019-11-13	Name: _	Grader	Sec.:
Do no No bo	oks o	r	may be used.	You may use an	a ACT-appro	xam. You have two	ring the export but NC
calcula cell pl		du	mputer Alge g the exam is), networking	g, or camera is per	rmitted tely no
The ex		onsist	Ĭ		d eighteen m	ultiple choice ques	tions hswer short
answe			\	-	0	swers to the multip	
this r		or each				in the circle corre	rrect
ansy	For	examp	ol (a) is cor	rect, you must wr			
D	4				(\mathbf{c}) (\mathbf{d}) (\mathbf{e})		
						_	onse in the body of the You will not get credit
			- •		-	d in the body of the	
	rade	Wrong			- 0	v	
	90	0	_	GOOL	D LUCK!		
	85	1	3. (a) (b)	(c) (d) (e)	12. (a	(\mathbf{b}) (\mathbf{c}) (\mathbf{d}) (\mathbf{c})	$\widehat{\mathbf{e}}$
	80	2	5. a b		12. (a		
	75 70	3	4. (a) (b)	(c) (d) (e)	13. (a	$(\mathbf{b}) (\mathbf{c}) (\mathbf{d}) (\mathbf{d})$	$\widehat{\mathbf{e}}$
	70 65	4 5					
	60	6	5. (a) (b)	(c) (d) (e)	14. (a	$\mathbf{b} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{d}$	\mathbf{e}
	55	7		\bigcirc \bigcirc \bigcirc	(
	50	8	6. (a) (b)	(c) (d) (e)	15. (a	$\mathbf{b} \mathbf{c} \mathbf{d} \mathbf{c}$	\mathbf{e}
	45	9	7. (a) (b)	(c) (d) (e)	16. (a	(\mathbf{b}) (\mathbf{c}) (\mathbf{d}) (\mathbf{d})	$\widehat{\mathbf{e}}$
	40 35	10 11	(1)		10. (a		
	30	12	8. (a) (b)	(c) (d) (e)	17. (a	$\begin{array}{c} \mathbf{(b)} \mathbf{(c)} \mathbf{(d)} \end{array}$	(e)
	25	13					
	20	14	9. (a) (b)	(c) (d) (e)	18. (a	$\mathbf{b} \cdot \mathbf{b} \cdot \mathbf{c} \cdot \mathbf{d} \cdot \mathbf{d} $	(\mathbf{e})
	15	15	10 (-) (1)		10		
	10	16	10. (a) (b)	(c) (d) (e)	19. (a	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbf{e})$
0	5 0	17 18	11. (a) (b)	(c) (d) (e)	20. (a	$(\mathbf{b}) (\mathbf{c}) (\mathbf{d}) (\mathbf{c})$	$\widehat{\mathbf{e}}$
•	•	10	(3)		20. (4		<u>-</u>
				For gra	ading use:		
ı	<u></u>	/[11]+:+ <u>-</u>	lo Choice	Short Answer).		
	I 1V	ւսոււթ	le Choice	Short Answer	II .		

Multiple Choice	Short Answer
(number right) (5 points each)	(out of 10 points)

Total	
	(out of 100 points)