Worksheet 10 – Logarithmic Functions (§5.3)

1. Convert the following equations from logarithmic form into exponential form.

(a)
$$\log_5(625) = 4$$

(a)
$$\log_5(625) = 4$$
 (c) $\log_2\left(\frac{1}{32}\right) = -5$ (e) $\log_{1/2}(8) = -3$ (b) $\log_7(49) = 2$ (d) $\log(1000) = 3$ (f) $\log_C(D) = E$

(e)
$$\log_{1/2}(8) = -3$$

(b)
$$\log_7(49) = 2$$

(d)
$$\log(1000) = 3$$

$$(\mathbf{f})\log_C(D) = E$$

2. Convert the following equations from exponential form into logarithmic form.

(a)
$$2^6 = 64$$

(c)
$$10^4 = 10.000$$

(e)
$$e^0 = 1$$

(a)
$$2^6 = 64$$
 (c) $10^4 = 10,000$
(b) $\left(\frac{1}{4}\right)^{-2} = 16$ (d) $3^{-2} = \frac{1}{9}$

(d)
$$3^{-2} = \frac{1}{9}$$

$$(\mathbf{f}) F^G = H$$

3. Fill in the blank.

(a)
$$\log \left(\frac{1}{81}\right) = -2$$
 (c) $\log \left(\frac{1}{9}\right) = 2$ (e) $\log \left(\frac{1}{9}\right) = -4$ (b) $\log_5 \left(\frac{1}{9}\right) = 3$ (d) $\log_8 \left(\frac{1}{9}\right) = 0$ (f) $\ln \left(\frac{1}{9}\right) = 1$

(c)
$$\log \left(\frac{1}{9} \right) = 2$$

(e)
$$\log(\boxed{}) = -4$$

(b)
$$\log_5(\boxed{}) = 3$$

$$(\mathbf{d}) \log_8(\boxed{)} = 0$$

$$(\mathbf{f})\ln(\square)=1$$

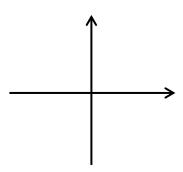
4. Compute the following logarithmic expressions.

(a)
$$\log_3(9)$$

(c)
$$\log_{49}(7)$$

(e)
$$\log(100)$$

(b)
$$\log_{1/3}(27)$$


(b)
$$\log_{1/3}(27)$$
 (d) $\log_4\left(\frac{1}{64}\right)$


(f)
$$\ln(\sqrt{e})$$

5. Sketch the graph of the following basic functions and then state their domain, range, and asymptote.

$$f(x) = \log_b(x), b > 1$$

$$f(x) = \log_b(x)$$
, $0 < b < 1$

Domain:

Domain:

Range:

Range:

Asymptote:

Asymptote:

6. Compute the domain of the following functions.

(a)
$$f(x) = \log_2(6 - 2x)$$

(d)
$$f(x) = \log(7 - x) + \log(x - 4)$$

(b)
$$f(x) = \log_{1/3}(3x + 12)$$

(e)
$$f(x) = \ln(x^2 + 1)$$

(c)
$$f(x) = \log_4(x^2 - 4)$$

(f)
$$f(x) = \sqrt{\ln(x)}$$

7. Sketch the graph of the following functions using transformations. For partial credit, start with the basic graph of each function and graph/label each stage of its transformation. Then state its domain, range, and asymptote.

(a)
$$f(x) = \log_2(x+1) + 1$$

(c)
$$f(x) = -\ln(x-2) + 1$$

(b)
$$f(x) = \log_{1/3}(x-1) - 1$$

(d)
$$f(x) = -2 + \log_5(-x)$$

8. Compute the inverse of the following invertible functions.

(a)
$$f(x) = \frac{1}{2} \cdot 6^{x-3}$$

(b) $f(x) = \log_2(x-1) + 4$

(c)
$$f(x) = e^{2x-1} - 3$$

(b)
$$f(x) = \log_2(x-1) + 4$$

(d)
$$f(x) = -\log_3(x+2) - 3$$