Worksheet 11 – Logarithm Rules (§5.4)

_			-		
1.	- E311	in	tha	h	lank.
1.	ГШ	111	une	1)	IAHK.

(a)
$$\log_2(8) + \log_2(4) = \log_2(\square)$$

(d)
$$\log_3(3^{-2}) = \square$$

(e) $2^{\log_2(16)} = \square$

(b)
$$\log_2(64) - \log_2(4) = \log_2(\square)$$

(e)
$$2^{\log_2(16)} = \boxed{}$$

(c)
$$3\log_2(4) = \log_2\left(4\square\right)$$

$$(\mathbf{f})\log_9(81) = \frac{\log_3(\square)}{\log_3(\square)} = \frac{\log_{81}(\square)}{\log_{81}(\square)}$$

2. Complete the following rules for any numbers M, N > 0.

(a)
$$\log_h(M) + \log_h(N) =$$

(d)
$$\log_b(b^x) =$$

(b)
$$\log_b(M) - \log_b(N) =$$

(d)
$$\log_b(b^x) = \square$$

(e) $b^{\log_b(x)} = \square$ if $x > \square$

(c)
$$r \log_b(M) =$$

(f)
$$\log_b(M) = \square$$
 for any $c > 0$

3. Determine whether the following statements as true or false.

(a)
$$\log_3(3^{-7}) = -7$$

(d)
$$\log_5(-4) + \log_5(-3) = \log_5(12)$$

(b)
$$3^{\log_3(-7)} = -7$$

(e)
$$\log(6^{-2}) = -2\log(6)$$

(c)
$$\log_4(5) + \log_4(6) = \log_4(11)$$

(f)
$$ln(0) = 1$$

4. Simplify the following expressions in terms of log(3).

(a)
$$\log(3^7)$$

$$(\mathbf{c})\log(81)$$

(b)
$$\log(\sqrt{3})$$

(d)
$$\log\left(\frac{1}{27}\right)$$

5. Simplify the following expressions in terms of log(2) and log(3).

$$(a) \log(6)$$

(c)
$$\log\left(\frac{9}{4}\right)$$

(b)
$$\log\left(\frac{16}{3}\right)$$

(d)
$$\log\left(\frac{1}{162}\right)$$

6. Simplify the following expressions (assume all variables are positive).

(a)
$$e^{\ln(6x)}$$

(c)
$$w^{\log_w(yz)}$$

(b)
$$\log_7(7^{2x+1})$$

(d)
$$\log(1000^t)$$

7. Write the following expressions using sums/differences of multiples of logarithms.

(a)
$$\ln \left(\frac{3x^2}{yz} \right)$$

(c)
$$\log\left(\frac{100x\sqrt{y}}{\sqrt[3]{10}}\right)$$

(b)
$$\log_3\left(\frac{(x-1)^2}{z^{3/2}}\right)$$

(d)
$$\log_6 \left(\frac{216}{r^3 y}\right)^4$$

8. Write the following expressions as a single logarithm (assume all variables are positive).

(a)
$$\log_3(x) + \log_3(6)$$

(d)
$$\ln(x+1) + \ln(3) - 3\ln(y)$$

(b)
$$\ln(3) + \ln(x^2) + \ln(y)$$

(e)
$$\frac{1}{2}\log(z+1) - \frac{1}{3}\log(w) + 4\log(x)$$

(c)
$$\ln(x^6) - \ln(x^2)$$

(f)
$$\log_3(90) - 2$$