Worksheet 5 – Inverse Functions (§3.7)

- 1. Given the invertible functions $f = \{(-3,4), (-2,2), (-1,0), (0,1), (1,3), (3,-1)\}$ and $g = \{(-3, -2), (-2, 0), (-1, -4), (1, -3), (2, 1), (3, 2)\}$, compute the following values.
 - (a) $f^{-1}(3)$
- (c) $g^{-1}(2)$

(e) $(f^{-1} \circ g^{-1})(-4)$

- **(b)** $f^{-1}(4)$
- (d) $q^{-1}(0)$

- (f) $(g^{-1} \circ f^{-1})(1)$
- 2. Use the graphs below to compute the following values.
 - (a) $f^{-1}(3)$
- (c) $g^{-1}(1)$

(e) $(f^{-1} \circ g^{-1})(0)$

- **(b)** $f^{-1}(4)$
- (d) $g^{-1}(4)$

(f) $(a^{-1} \circ f^{-1})(1)$

- 3. Sketch the graphs of the inverses of the functions given in the previous exercise.
- **4.** Show/provide reason for whether or not the following functions are invertible. Then if a function is invertible, compute its inverse.
 - (a) $f = \{(3, -2), (2, 6), (10, 4), (0, 1), (-3, 6)\}$ (d) f(x) = |x|
 - **(b)** $f = \{(1, -3), (-3, 4), (0, -1), (2, 2)\}$
- (e) $f(x) = \frac{x}{2x+1}$ (f) $f(x) = \frac{1}{x^4+1}$

(c) $f(x) = \sqrt[3]{x} - 4$

- **5.** For each given pair of functions, use composition to show that they are inverses.
 - (a) $f(x) = \frac{x-2}{3} + 4$, g(x) = 3x 10 (c) $f(x) = \frac{x-2}{2x-1}$, $g(x) = \frac{x-2}{2x-1}$
 - **(b)** $f(x) = \sqrt[5]{3x 1}, g(x) = \frac{1}{3}x^5 + \frac{1}{3}$
- **6.** Compute the inverse of the following invertible functions. Then graph both the function and its inverse on the same set of axes.
 - (a) $f = \{(3, -2), (1,3), (0,2), (-2,1)\}$
- $(\mathbf{c}) f(x) = \sqrt[3]{x-2}$

(b) f(x) = 3 - 2x

- (d) $f(x) = \sqrt{x+2}$
- 7. Complete the following rule: "If a function and its inverse are graphed on the same axes, then their graphs are _____