Exam 2

Name: Section: _	

Do not remove this answer page — you will return the whole exam. You will be allowed two hours to complete this test. You are allowed to use notes on a single piece of 8.5" x 11" paper, front and back, including formulas and theorems. You are required to turn this page in with your exam. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS). Absolutely no communication device use during the exam is allowed.

The exam consists of 10 multiple choice questions and 5 free response questions. Record your answers to the multiple choice questions on this page by filling in the circle corresponding to the correct answer.

Show <u>all work</u> to receive full credit on the free response problems. It will also help you check your answers to show work on multiple choice problems.

Multiple Choice Questions

1 A B C D E 6 A B C) <u>D</u>
---------------------	------------

2 (<u>A</u>) (\mathbf{B}) ($\overline{\mathbf{C}}$	$\overline{\mathbf{D}}$	E	7	\mathbf{A}	$\left(\mathbf{B} \right)$	$\binom{\mathbf{C}}{}$	$\overline{\mathbf{D}}$	\mathbf{E}
------------	--------------	------------------	-------------------------	-------------------------	---	---	--------------	-----------------------------	------------------------	-------------------------	--------------

3	(A)) (]	B)) (\bigcirc) (D) (\mathbf{E}	8	A) (В) ($\overline{\mathbf{C}}$) (D) (\mathbf{E})
---	-----	------	----	-----	------------	-----	---	-----	--------------	---	---	-----	---	-----	-------------------------	-----	---	-----	--------------	---

4 /	$\langle \rangle$	\bigcirc \bigcirc			(E)	•	$\langle \rangle$				
4 (<u>A</u>) (B (\mathbf{C}	\mathbf{D}	E	9	A	(\mathbf{R})	\bigcirc	\bigcirc (D) (E

5	/ A)	(B)	$\left(\begin{array}{c} \mathbf{C} \end{array} \right)$	(D)	$\overline{\mathbf{E}}$	10	(A)	(B)	\bigcirc	(\mathbf{D})	E
J	(\mathbf{A})	(\mathbf{D})	(🔾)	(\mathbf{D})	(<u>L'</u>)	10	(1	(\mathbf{D})	((\mathbf{D})	(11)

Multiple						Total
Choice	11	12	13	14	15	Score
50	10	10	10	10	10	100

Multiple Choice Questions

1. (5 points) Give the first four terms of the sequence $\{a_1, a_2, a_3, a_4\}$ defined by

$$a_n = \frac{\cos(n\pi)}{n!}.$$

- **A.** $\{-1, \frac{1}{2}, \frac{-1}{6}, \frac{1}{24}\}$
- B. $\{1, \frac{-1}{2}, \frac{1}{3}, \frac{-1}{4}\}$
- C. $\{0, \frac{2}{\sqrt{2}}, \frac{3\sqrt{2}}{4}, \frac{-\sqrt{2}}{3}\}$
- D. $\{-1, 0, \frac{-1}{6}, 0\}$
- E. $\{-\pi, \frac{\pi}{2}, \frac{\pi}{6}, \frac{\pi}{24}\}$
- 2. (5 points) Find the limit of the **sequence** $\{a_1, a_2, a_3, \dots\}$ defined by

$$a_n = \frac{10n}{\sqrt{4n^2 + 9}}.$$

- A. 2
- B. 0
- C. ∞
- **D.** 5
- E. $\frac{5}{2}$
- 3. (5 points) Find the sum of the series $\sum_{n=3}^{\infty} \left(\frac{1}{n+4} \frac{1}{n+5} \right)$.
 - A. $\frac{1}{4}$
 - **B.** $\frac{1}{7}$
 - C. $\frac{1}{20}$
 - D. $\frac{1}{56}$
 - E. This series diverges

4. (5 points) Use the formula for the sum of a geometric series to find the sum

$$\frac{5^3}{7} + \frac{5^4}{7^2} + \frac{5^5}{7^3} + \frac{5^6}{7^4} + \cdots$$

- A. $\frac{7}{2}$ B. $\frac{5}{7}$ C. $\frac{432}{7}$
- **D.** $\frac{125}{2}$
- E. This series diverges.

- 5. (5 points) Does the series $\sum_{n=0}^{\infty} \frac{\sqrt{n}}{n^2 30}$ converge or diverge?
 - A. Converges by the ratio test since $\lim_{n\to\infty} \left| \frac{\sqrt{n+1}}{(n+1)^2 30} \cdot \frac{n^2 30}{\sqrt{n}} \right| < 1$.
 - B. Converges because $\lim_{n\to\infty} \frac{\sqrt{n}}{n^2 30} = 0$.
 - C. Diverges by the limit comparison test to $\sum_{n=6}^{\infty} \frac{1}{\sqrt{n}}$.
 - D. Diverges by the ratio test since $\lim_{n\to\infty} \left| \frac{\sqrt{n+1}}{(n+1)^2 30} \cdot \frac{n^2 30}{\sqrt{n}} \right| = 1$.
 - E. Converges by the limit comparison test to $\sum_{n=2}^{\infty} \frac{1}{n^{3/2}}$.

- 6. (5 points) What would you compare $\sum_{n=1}^{\infty} \frac{2^n+7}{5^n-3}$ to for a conclusive limit comparison test?
 - A. $\sum_{n=1}^{\infty} \left(\frac{9}{2}\right)^n$
 - B. $\sum_{n=1}^{\infty} \left(\frac{5}{2}\right)^n$
 - C. $\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n$
 - $\mathbf{D.} \sum_{n=1}^{\infty} \left(\frac{2}{5}\right)^n$
 - E. The limit comparison test can't be used to understand convergence for this series.
- 7. (5 points) Does the series $\sum_{n=1}^{\infty} \frac{\cos(n)}{n^3}$ converge absolutely, converge conditionally, or diverge?
 - A. Converges absolutely because $\left|\frac{\cos(n)}{n^3}\right| \leq \frac{1}{n^3}$ and $\sum_{n=1}^{\infty} \frac{1}{n^3}$ converges.
 - B. Converges conditionally by the alternating series test.
 - C. Diverges since $\lim_{n\to\infty} \cos(n)$ does not exist.
 - D. Converges absolutely since $\lim_{n\to\infty} \frac{\cos(n)}{n^3} = 0$.
 - E. Converges conditionally since $-1 \le \cos(n) \le 1$.
- 8. (5 points) Find the smallest value of N so that S_N approximates $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ to within an error of at most .21.
 - A. N = 16
 - B. N = 18
 - C. N = 20
 - **D.** N = 22
 - E. N = 24

- 9. (5 points) What is the interval of convergence of the power series $\sum_{n=1}^{\infty} n!(x+5)^n$?
 - A. $(-\infty, \infty)$
 - **B.** $\{-5\}$
 - C. [-13, 3]
 - D. $\{0\}$
 - E. [-13, 3)

- 10. (5 points) Which power series represents the function $f(x) = x^2 \cos(3x^4)$ on the interval $(-\infty, \infty)$?
 - A. $\sum_{n=0}^{\infty} \frac{(-3)^n x^{4n+2}}{(2n)!}$
 - B. $\sum_{n=0}^{\infty} \frac{(-1)^n 3^{2n} x^{6n}}{(2n)!}$
 - C. $\sum_{n=0}^{\infty} \frac{(-1)^n 3^{2n} x^{8n+2}}{(2n)!}$
 - D. $\sum_{n=0}^{\infty} \frac{(-1)^n x^{8n+3}}{(2n+1)!}$
 - E. $\sum_{n=0}^{\infty} \frac{(-9)^n x^{16n+2}}{(2n)!}$

Free Response Questions

- 11. Decide if the series converges or diverges. Clearly state which test(s) are used, and show all steps.
 - (a) (5 points) $\sum_{n=0}^{\infty} \frac{3^n}{n!}$

Solution: Converges by the ratio test since

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{3^{n+1}}{(n+1)!} \cdot \frac{n!}{3^n} \right| = \lim_{n \to \infty} \left| \frac{3}{n+1} \right| = 0 < 1.$$

(b) (5 points) $\sum_{n=1}^{\infty} \frac{n}{4n^3 - 1}$

Solution: Converges by the limit comparison test to $\sum_{n=1}^{\infty} \frac{1}{n^2}$, a convergent *p*-series.

$$\lim_{n \to \infty} \frac{\frac{n}{4n^3 - 1}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n}{4n^3 - 1} \cdot \frac{n^2}{1} = \lim_{n \to \infty} \frac{n^3}{4n^3 - 1} = \frac{1}{4},$$

and $0 < \frac{1}{4} < \infty$.

12. Are the series absolutely convergent, conditionally convergent or divergent? Clearly state which test(s) are used, and show all steps.

(a) (6 points)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1}$$

Solution: The series converges conditionally.

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{2n-1} \right| = \sum_{n=1}^{\infty} \frac{1}{2n-1}$$

which diverges by a direct comparison to $\sum_{n=1}^{\infty} \frac{1}{2n}$ (p-series with p=1).

We have,

$$\lim_{n\to\infty}\frac{1}{2n-1}=0 \ \text{ and } \ \frac{1}{2(n+1)-1}<\frac{1}{2n-1} \ (\text{decreasing})$$

so $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1}$ converges by the alernating series test.

(b) (4 points) $\sum_{n=1}^{\infty} \frac{(-1)^n}{7}$

Solution: The series diverges by the divergence test since $\lim_{n\to\infty} \frac{(-1)^n}{7} \neq 0$.

13. (10 points) Find the interval of convergence for the series. Hint: Show clearly where you test the endpoints of your interval.

$$\sum_{n=1}^{\infty} \frac{n(x+2)^n}{7^n}$$

Solution: Using the Ratio Test

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)(x+2)^{n+1}}{7^{n+1}} \cdot \frac{7^n}{n(x+2)^n} \right| = \lim_{n \to \infty} \left| \frac{n+1}{n} \cdot \frac{x+2}{7} \right| = \left| \frac{x+2}{7} \right|$$

Thus we need $-1 < \frac{x+2}{7} < 1$, or -7 < x + 2 < 7, so -9 < x < 5.

If x = -9 then $\sum_{n=1}^{\infty} \frac{n(-7)^n}{7^n} = \sum_{n=1}^{\infty} n(-1)^n$ diverges by the divergence test.

If x = 5 then $\sum_{n=1}^{\infty} \frac{n7^n}{7^n} = \sum_{n=1}^{\infty} n$ diverges by the divergence test.

Thus the interval of convergence is (-9, 5).

14. (a) (4 points) Write a Taylor series centered at x = 0 for the function $f(x) = \frac{2}{1 - x^7}$.

Solution:

$$\frac{2}{1-x^7} = 2\sum_{n=0}^{\infty} (x^7)^n = \sum_{n=0}^{\infty} 2x^{7n}$$

(b) (6 points) Use your answer in (a) to help find the series for $g(x) = \frac{x^6}{(1-x^7)^2}$ centered at x = 0. Hint: First compute f'(x).

Solution: $f(x) = 2(1 - x^7)^{-1}$, $f'(x) = -2(1 - x^7)^{-2}(-7x^6) = \frac{14x^6}{(1 - x^7)^2}$.

$$f(x) = \sum_{n=0}^{\infty} 2x^{7n}$$

$$f'(x) = \frac{14x^6}{1 - x^7} = \sum_{n=1}^{\infty} 2(7n)x^{7n-1}$$

Thus,

$$\frac{x^6}{(1-x^7)^2} = \frac{1}{14} \sum_{n=1}^{\infty} 14nx^{7n-1} = \sum_{n=1}^{\infty} nx^{7n-1}$$

15. (a) (4 points) Write the Maclaurin series, i.e., the Taylor Series centered at x = 0, for

$$f(x) = x^3 e^{2x}$$

.

Solution:

$$f(x) = x^3 \sum_{n=0}^{\infty} \frac{(2x)^n}{n!} = x^3 \sum_{n=0}^{\infty} \frac{2^n x^n}{n!} = \sum_{n=0}^{\infty} \frac{2^n x^{n+3}}{n!}$$

(b) (6 points) Write the first four terms of the Taylor series centered at x=7 for

$$f(x) = \ln x$$

.

Solution:

$$f(x) = \ln x \quad f(7) = \ln 7$$

$$f'(x) = \frac{1}{x} \quad f'(7) = \frac{1}{7}$$

$$f''(x) = \frac{-1}{x^2} \quad f''(7) = -\frac{1}{49}$$

$$f'''(x) = \frac{2}{x^3} \quad f'''(7) = \frac{2}{343}$$

The first four terms are

$$\ln 7 + \frac{1}{7}(x-7) - \frac{1}{49(2)}(x-7)^2 + \frac{2}{343(6)}(x-7)^3.$$