MA 114 — Calculus II Sections 5 – 8 and 401, 40	Fall 2014
Exam 4	Dec. 16, 2014
Name:	
Section:	

Last 4 digits of student ID #: _____

- No books or notes may be used.
- Turn off all your electronic devices and do not wear ear-plugs during the exam.
- You may use a calculator, but not one which has symbolic manipulation capabilities or a QWERTY keyboard.
- Additional blank sheets for scratch work are available upon request.
- Multiple Choice Questions:
 Record your answers on the right of this cover page by marking the box corresponding to the correct answer.
- Free Response Questions:

 Show all your work on the page of the problem. Clearly indicate your answer and the reasoning used to arrive at that answer.

Multiple Choice Answers

Question					
1	Α	В	X	D.	Ε
2	A.	X	С	D	Ξ
3	A	В	X	D	Ε
4	X	В	С	D	Ε

Exam Scores

Question	Score	Total
MC		20
5		17
6		15
7		15
8		18
9		15
Total		100

Unsupported answers for the free response questions may not receive credit!

Record the correct answer to the following problems on the front page of this exam.

What conclusion can we draw about the convergence of $\sum_{n=1}^{\infty} \frac{2n-1}{2n^2}$ if we use the limit

comparison test with the series $\sum_{n=0}^{\infty} \frac{1}{n}$?

$$\frac{2u-1}{2u^2} \cdot \frac{u}{1} = \frac{2u^2-u}{2u^2} \longrightarrow 1$$

- The series converges absolutely. A.
- Since In & diverges, so В. The series converges conditionally. does 2 2nd

The series diverges.

- D. The series converges for n > 1 and diverges for n < 1.
- Ε. The test is inconclusive.
- Which of the following is the general solution of the differential equation

$$y' + \frac{3}{2+x}y = \frac{\sin(x)}{(2+x)^5}, \quad x > 0.$$

A.
$$y = \int \frac{\sin(x)}{(2+x)^5} dx + \frac{C}{(2+x)^3}$$
.

$$y = \frac{1}{(2+x)^3} \int \frac{\sin(x)}{(2+x)^2} dx + \frac{C}{(2+x)^3}.$$

C.
$$y = (2+x)^3 \int \frac{\sin(x)}{(2+x)^2} dx + C(2+x)^3$$
.

D.
$$y = -\frac{\cos(x)}{(2+x)^4} + \frac{C}{(2+x)^3}$$
.

E.
$$y = (2+x)^3 \int \frac{\sin(x)}{(2+x)^5} dx + C(2+x)^3$$
.

$$\int_{2+x}^{3} dx = 3 \cdot 2 \cdot (2+x)$$

$$A = e^{3lu(2+x)} = (2+x)^3$$

Record the correct answer to the following problems on the front page of this exam.

Which of the following integrals converge?

i.
$$\int_{-1}^{1} \frac{1}{x^{2}+1} dx \qquad x^{2}+1 > 0 \quad \text{for all } x = 0 \quad \text{for all } x = 0$$
ii.
$$\int_{1}^{\infty} \frac{1}{e^{x}} dx = \lim_{R \to \infty} \left(-e^{-R} + e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R \to \infty} \left(-2 \times e^{-1}\right) = e^{-1}$$
iii.
$$\int_{0}^{1} \frac{1}{x^{3/2}} dx = \lim_{R$$

- Only (i).
- В. Only (iii).
- (i) and (ii).
- (i) and (iii).
- \mathbf{E} . (ii) and (iii).
- Which of the following is the Taylor polynomial of degree 3 for

centered at
$$c = 0$$
?

$$2x + x^2 + \frac{1}{3}x^3$$
.

B.
$$2 + x + x^2$$
.

C.
$$2x + 2x^2 + x^3$$

D.
$$1 + 3x + 4x^2 - x^3$$
.

E.
$$x + \frac{1}{2}x^2 - \frac{1}{3}x^3$$

$$f(x) = \sin(x)e^{x} + x$$

$$f'(x) = \cos(x)e^{x} + \sin(x)e^{x} + 1$$

$$= (\cos(x) + \sin(x)e^{x}) + \cos(x)e^{x}$$

$$= (\cos(x) + \sin(x)e^{x}) + \cos(x)e^{x}$$

$$= 2\cos(x)e^{x}$$

$$= 2\cos(x)e^{$$

Free Response Questions: Show your work!

- 5. Given the curve with parametrization $c(t) = (t^2 4, t^3 + 6)$.
 - (a) Show that the point (-3,7) is on the parametric curve.

$$-3 = E^{2} - 4 \Rightarrow E^{2} = 1 \Rightarrow t = \pm 1.$$

$$t = 1: E^{3} + 6 = 7 \times 4$$

$$t = -1: E^{3} + 6 = 5 \times 4$$
Hence $C(1) = (-3,7)$

(b) Find the equation for the tangent line to the curve at the point (-3,7).

Slope =
$$\frac{y'(1)}{x'(1)} = \frac{3}{2}$$
. Equation is $y - 7 = \frac{3}{2}(x+3)$
 $y'(+) = 3t^2$
 $x'(+) = 2t$

$$|x| = \frac{3}{2}x + \frac{23}{2}$$

(c) Find the arclength for the curve from $0 \le t \le 2$.

$$S = \int \sqrt{x(4)^{2} + 2(4)^{2}} dt = \int \sqrt{4t^{2} + 9t^{4}} dt$$

$$= \int t \sqrt{4 + 9t^{2}} dt = \int \sqrt{4t^{2} + 9t^{4}} dt$$

$$= \int t \sqrt{4 + 9t^{2}} dt = \int \sqrt{4t^{2} + 9t^{4}} dt$$

$$= \int t \sqrt{4 + 9t^{2}} dt = \int \sqrt{4t^{2} + 9t^{4}} dt$$

$$= \int t \sqrt{4t^{2} + 9t^{4}} dt = \int \sqrt{4t^{2} + 9t^{4}} dt$$

$$= \int t \sqrt{4t^{2} + 9t^{4}} dt = \int \sqrt{4t^{2} + 9t^{4}} dt$$

$$= \int t \sqrt{4t^{2} + 9t^{4}} dt = \int \sqrt{4t^{2} + 9t^{4}} dt$$

$$= \int t \sqrt{4t^{2} + 9t^{4}} dt = \int \sqrt{4t^{2} + 9t^{4}} dt$$

$$= \int t \sqrt{4t^{2} + 9t^{4}} dt = \int \sqrt{4t^{2} + 9t^{4}} dt$$

$$= \int t \sqrt{4t^{2} + 9t^{4}} dt = \int \sqrt{4t^{2} + 9t^{4}} dt$$

$$= \int t \sqrt{4t^{2} + 9t^{4}} dt = \int \sqrt{4t^{2} + 9t^{4}} dt$$

$$= \int t \sqrt{4t^{2} + 9t^{4}} dt = \int \sqrt{4t^{2} + 9t^{4}} dt$$

$$= \int t \sqrt{4t^{2} + 9t^{4}} dt = \int \sqrt{4t^{2} + 9t^{4}} dt$$

$$= \int t \sqrt{4t^{2} + 9t^{4}} dt = \int \sqrt{4t^{2} + 9t^{4}} dt$$

$$= \int t \sqrt{4t^{2} + 9t^{4}} dt = \int \sqrt{4t^{2} + 9t^{4}} dt$$

$$= \int t \sqrt{4t^{2} + 9t^{4}} dt = \int \sqrt{4t^{2} + 9t^{4}} dt$$

$$= \int t \sqrt{4t^{2} + 9t^{4}} dt = \int \sqrt{4t^{2} + 9t^{4}} dt$$

$$= \int t \sqrt{4t^{2} + 9t^{4}} dt = \int \sqrt{4t^{2} + 9t^{4}} dt$$

$$= \int t \sqrt{4t^{2} + 9t^{4}} dt = \int \sqrt{4t^{2} + 9t^{4}} dt$$

$$= \int t \sqrt{4t^{2} + 9t^{4}} dt = \int \sqrt{4t^{2} + 9t^{4}} dt$$

$$= \int t \sqrt{4t^{2} + 9t^{4}} dt$$

$$= \int t$$

Free Response Questions: Show your work!

6. (a) Use calculus to compute the integral $\int \tan^3(x) \sec^4(x) dx$.

$$= \int fau^{3}(x)(1+fau^{2}(x)) sec^{2}(x) dx$$

$$= \int fau^{3}(x)(1+u^{2}) du = \int u^{4} + \int u^{6} + C$$

$$= \int fau^{4}(x) dx$$

$$= \int fau^{4}(x) + \int fa^{6}(x) + C$$

$$= \int fau^{4}(x) + \int fa^{6}(x) + C$$

(b) Use calculus to compute the integral $\int \frac{x^3}{x^2-4} dx$.

$$(x^{2}-4)/x^{3}$$

$$+ x^{3}-4x$$

$$= -\frac{1}{2}x^{2} + 2 \int \frac{du}{u} = \frac{1}{2}x^{2} + 2 \ln |u| + C$$

$$= \frac{1}{2}x^{2} + 2 \ln |x^{2}-4| + C$$

Below is a graph of

the limaçon curve $r = \frac{3}{2} - \sin(\theta)$ and the circle $r = 2\sin(\theta)$ for θ in $[0, 2\pi]$.

(a) Identify the polar coordinates of the two points of intersection.

$$\frac{3}{2} - \sin \theta = 2 \sin \theta$$

$$\Rightarrow \sin \theta = \frac{1}{2} \Rightarrow \theta = \frac{1}{6}, \frac{50}{6}$$

How Y = 1

(b) Find the rectangular coordinates of the two intersection points.

$$x = r \cos(\frac{1}{6}) = \frac{3}{2}, \quad y = r \sin(\frac{1}{6}) = \frac{1}{2}.$$
The first point has rect. coordinates (\frac{1}{3}, \frac{1}{2}).

$$x = r \cos(\frac{1}{6}) = -\frac{1}{2}, \quad y = r \sin(\frac{1}{6}) = \frac{1}{2}.$$
The Second point has rect. coord. (-\frac{1}{2}, \frac{1}{2}).

(c) Set up the integral for computing the area inside the circle but outside of the limaçon. Do not evaluate the integral!

$$\frac{3}{2} \left(\left(4 \sin^2(\theta) - \left(\frac{3}{2} - \sin \theta \right)^2 \right) d\theta$$

8. Determine the radius and interval of convergence for the power series

$$\sum_{n=2}^{\infty} \frac{(2x)^n}{n^2 + n}.$$

glus Tinterval of convergence is/

The same of the same of

9. (a) Sketch the region inside the circle $x^2 + y^2 = 4$, above the x-axis, and below the line $y = \sqrt{3}x$.

(b) Find the volume of the solid obtained by rotating the above region about the y-axis.

$$2\pi \int x \sqrt{3} x dx + 2\pi \int x \sqrt{4-x^2} dx$$

$$=2\pi \left(\sqrt{3}\frac{1}{3}x^{3}\right)^{3} - \frac{1}{2}\int u^{\frac{1}{2}}du$$

$$du = -2x dx$$

$$=2\pi\left(\frac{\sqrt{3}}{3}-\frac{1}{2}\left(\frac{2}{3}u^{\frac{3}{2}}\right)^{\circ}\right)$$

$$=2\pi\left(\frac{\sqrt{3}}{3}+\frac{1}{3}\sqrt{3}^{3}\right)=2\pi\left(\frac{\sqrt{3}}{3}+\sqrt{3}\right)$$

$$=\frac{877}{3}\sqrt{3}\approx 14.51$$

 $\frac{1}{\sqrt{4} + \sqrt{2}} = \sqrt{2} + \sqrt{2} +$