1. Suppose we estimate the area under the graph $f(x)=2^{x}$ from $x=1$ to $x=16$ by partitioning the interval into 30 equal subintervals and using the right endpoint of each interval to determine the height of the rectangle. What is the area of the $12^{\text {th }}$ rectangle?
2. A Mustang can accelerate from 0 to 88 feet per second in 5 seconds (i.e., 0 to 60 miles per hour in 5 seconds). The velocity of the Mustang is measured each second and recorded in the table below. You should assume the velocity is increasing throughout the entire 5 second period. The distance traveled equals the area under the velocity curve. You can estimate this area using left endpoints or right endpoints.

t	0	1	2	3	4	5
$v(t)$	0	22	52	73	81	88

a. Draw a picture to help you decide which will give an overestimate of the distance traveled and which will give an underestimate of the distance traveled.
b. What is the longest distance the Mustang could have traveled from $t=0$ to $t=5$?
c. What is the shortest distance the Mustang could have traveled from $t=0$ to $t=5$?
3. A train travels in a straight westward direction along a track. The velocity of the train varies, but is measured at regular time intervals of $1 / 10$ hour. The measurements for the first half hour are

time	0	0.1	0.2	0.3	0.4	0.5
velocity	0	8	13	17	20	22

Estimate the distance traveled by the train over the first half hour assuming that the speed of the train is a linear function on each of the subintervals. The velocity in the table is given in miles per hour.

