I. First rewrite the function in the form $y=a x^{n}$. Then find the derivative.

1. $y=\frac{5}{x^{3}}$
2. $y=\sqrt[3]{x^{10}}$
3. $y=\frac{1}{5 x^{3}}$
4. $y=\frac{7}{6 \sqrt[5]{x^{8}}}$
II. Rewrite if necessary until you have the sum of a few terms, each of the form $a x^{n}$.

Then find the derivative. (Do not use the product or quotient rule for these.)
5. $y=\frac{x^{3}-3 x^{2}+5 x+2}{x^{2}}$
6. $y=x^{2}\left(x^{3}+\sqrt{x}-\frac{1}{x^{9}}+15\right)$
III. Find the derivative. You will want the product or quotient rule. Do not simplify your answer.
7. $y=\left(3 x^{2}+2 x-3\right)\left(5 x^{7}+4 x^{3}-2 x+1\right) \quad$ 8. $y=\frac{8 x^{4}+17}{7 x^{3}+2 x-1}$
IV. Suppose the functions $f(x)$ and $g(x)$ and their derivatives have the following values at $x=1$:

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
1	6	2	-7	5

9. Find $h^{\prime}(1)$ if $h(x)=f(x) g(x)$
10. Find $h^{\prime}(1)$ if $h(x)=\frac{f(x)+g(x)}{3 x+1}$.
