I. Find the derivative of each of the following. Do not simplify your answers.

1. $y=\frac{5}{\sqrt[7]{3 x-5}}$ (Rewrite first!)
2. $y=\left(x^{3}+6\right)^{23}$
3. $y=\left(\left(x^{2}+1\right)^{4}+3\right)^{6}+5 x+10$
II. Suppose f and g and their first derivatives have the following values at $x=2$ and $x=4$:

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
2	5	4	7	-3
4	1	-2	9	8

a. Find $h^{\prime}(2)$ if $h(x)=\sqrt{f(x)+g(x)}$
b. Find $h^{\prime}(2)$ if $h(x)=f(g(x))$
III. Suppose f and g and their first derivatives have the following values at $x=1$ and $x=2$:

Find $h^{\prime}(2)$ if $h(x)=f(x+g(x))$.

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
1	6	1	-7	$1 / 2$
2	3	-1	$1 / 2$	-4

Then find the equation of the tangent line to the graph of $y=h(x)$ at $x=2$.
IV. Find the third derivative of $y=\sqrt{3 x+2}$.

