1. On the same graph, plot both $f(x)=x^{3}-3 x-5$ and its derivative on the interval $[-4,4]$. What do you notice? In particular, what appears to be true about $f(x)$ when its derivative is zero? What appears to be true about $f(x)$ when its derivative is positive? is negative?
2. Let $g(x)=\frac{x+4}{x+9}$.
a. Find the critical numbers of $g(x)$, if any.
b. Find the maximum and minimum value of $g(x)$ on the interval $[1,6]$.
3. Let $h(x)=e^{x}(x-5)$.
a. Find the critical numbers of $h(x)$, if any.
b. Find the maximum and minimum value of $h(x)$ on the interval $[0,6]$.
4. Let $g(x)=x^{2}+3 x+1$. Find a value c in the interval $[3,9]$ such that $g^{\prime}(c)$ equals the average rate of change of $g(x)$ on the interval $[3,9]$.
