1. Suppose $f(x)=(x-1)(x-4)(x-9)=x^{3}-14 x^{2}+49 x-36$. Find the intervals on which $f(x)$ is increasing and the intervals on which $f(x)$ is decreasing.
2. Suppose $g^{\prime}(x)=(x-1)(x-4)(x-9)=x^{3}-14 x^{2}+49 x-36$. Find the intervals on which $g(x)$ is increasing and the intervals on which $g(x)$ is decreasing.
3. Suppose $h(x)=\frac{1}{(2 x-10)^{2}}$. Find the largest value of A for which the function $h(x)$ is increasing for all x in the interval $(-\infty, A)$.
4. Suppose $f^{\prime}(x)=\frac{-5}{(x-3)^{2}}$. Find the value of x in the interval $[-20,2]$ on which $f(x)$ takes its maximum.
5. Suppose we know that $g(8)=-3$. In addition, you are given that $g(x)$ is continuous everywhere, and is increasing on the interval $(-\infty, 10)$ and decreasing on the interval $(10, \infty)$. Which of the following are possible, and which are not possible? Hint: draw a graph in each case.
a. g has a local minimum at $x=8$
b. g has a local maximum at $x=10$
c. $g(0)=-5$
d. $g(0)=5$
e. $\quad g(0)=-6$ and $g(1)=-4$
f. $\quad g(0)=-4$ and $g(1)=-6$
g. $\quad g(0)=-4$ and $g(12)=-4$
6. Sketch the graph of a function which is continuous and differentiable everywhere, is increasing on the intervals $(-\infty,-2)$ and $(5,7)$, and is decreasing on the intervals $(-2,5)$ and $(7, \infty)$.
