MA123, Chapter 2: Change, and the idea of the derivative (pp. 17-45, Gootman)

Chapter Goals: e Understand average rates of change.
e Understand the ideas leading to instantaneous rates of change.

e Understand the connection between instantaneous rates of change and the derivative.

e Know the definition of the derivative at a point.

e Use the definition of the derivative to calculate derivatives.

e Understand the connection between a position function, a velocity function, and the
derivative.

e Understand the connection between the derivative and the slope of a tangent line.

Assignment 02 Assignment 03

Roughly speaking, Calculus describes how quantities change, and uses this description of change to give us

extra information about the quantities themselves.

» | Average rates of change: We are all familiar with the concept of velocity (speed): If you drive a

distance of 120 miles in two hours, then your average velocity, or rate of travel, is 120/2 = 60 miles per hour.

In other words, the average velocity is equal to the ratio of the distance traveled over the time elapsed:

distance traveled  As

average velocity = time clapsed | AL

y2—y1 _ Ay
To—x1 Az

Often, a change in a quantity ¢ is expressed by the symbol Ag (you should not think of this as A

times ¢, but rather as one quantity!).

In general, the quantity is called the average rate of change of y with respect to x.

Finding average rates of change is important in many contexts. For instance, we may be interested in
knowing how quickly the air temperature is dropping as a storm approaches, or how fast revenues are increasing

from the sale of a new product.

Note:| In this course we use the terms “speed” and “velocity” for the same concept. This is not the case
Yy
in some other courses. Thus “instantaneous speed” and “instantaneous velocity” have the same meaning, and

“average speed” and “average velocity” have the same meaning.

Example 1:| A train travels from city A to city B. It leaves A at 10:00 am and arrives at B at 2:30 pm. The

distance between the cities is 150 miles. What was the average velocity of the train in miles per hour (mph)?

Do you think the train was always traveling at the same speed? MOS‘ﬁ \‘\i&/\i’l Mot ) “he. érc«i N
| —— 150 miles “\ C) ()

Citﬂg Needs €o séop and  Stavt,

[0 A S:30Pm

CBA

As= d‘5+QﬂC& éraudeJ: 1570 miles

>

S /S50 = —
+ g5 233 m?h

|

/\ ¢ = €ime EIQPSG‘C) = 4.5 houts A\)Eraaﬁ \/eloaf_%:

>
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Example 2:| A train leaves station A at 8:00 am and arrives at station B at 10:00 am. The train stops at

station B for 1 hour and then continues to station C'. It arrives at station C' at 3:00 pm. The average velocity

from A to B was 40 mph and the average velocity from B to C' was 50 mph. What was the average velocity

from A to C (including stopping time)? (Ompuf'vﬂﬂmwj+ance5 :

| géa{ion:B vaJro.hce_%am_ A<oB = QNours - Yo Miles = g0 |

54'0\_]"0"\4 o P P Sﬁﬁ"' Rowr— Miles
ion D\jéanc&;rom—f) to C = 4\

BAM ———04m ,, . S 50 miles _ 200

Aé=Rhouts AN —» o e o
Recall: - T 53
As lotal C)\S'éaﬂcg fome A do ¢ =

Average Velocita = F0+R00 =250 miles

A& Toedl Eime. elaPSed/[;umAéa C=2+ [ +4=F hours

A¢ Eqvc(aéq VCIOQ“&S]: [iﬁ—s:}é’é
AS: N - [A\/emﬁa \/E‘aoi}]

Ill\}f’rcge Velacity Jiom Ao C = Iotance fiom Ae< _ Q3o
éme E[ sed h + = L&O m }L
ap From Ao \PI

Generally, in computing average rates of change of a quantity y with respect to a quantity x, there is a function

that shows how the values of  and y are related.

» | Average rates of change of a function: ‘ Y
= f(z
The average rate of change of the function y = f(z) Flas) y=7I@
between x = x1; and x = x5 is 2
h i —
average rate of change = Clange ?n Y _ f(w2) = f(@1) f (z2) — f(21)
change in z To — T1
. . Sz}
The average rate of change is the slope of the secant line N
between x = x1 and x = x9 on the graph of f, that is, the
line that passes through (x1, f(x1)) and (2, f(z2)). 0 x
X |

Example 3:| Find the average rate of change of g(x) = 2+ 4(x — 1) with respect to = as « changes from —2

to 5. Could you have predicted your answer using your knowledge of linear equations?
X
2 r
. . ) i _1\ = o) = 2\ =
/lJOfE)S(X)ISQlan)SO the SeﬁﬁﬂélanCoﬂnecf o g Dot o Com?u%e_ 5( 2)=2+9(-2-0=Q+4(3)= 2 -(2 =10

fhe &"‘Ph o i wl pece S(X],(@ﬂfl#lfﬁll:\) fheaueraat (cte oJCchonﬁc e L)tz avim-aic - g
(&)\\id\ is Zhe SlaFe 07[14\6 Seceqt ,if\ej s fthIaPe Dz[fke lite 3&)‘]\{% /—\vemsg’Raéa D7C Ch‘”‘ﬁg _ ﬂﬁ};ﬂfj)

“% 3&) hs SIOPQ 1sothe Aol raém]lchahﬁe 0} 605 befuseen = cng — =) S
X=5is 4. S e 2¢ 4

<, BN
Find the average rate of change of k(t) = /3t + 1 with respect to ¢ as t changes from 1 to E:C.';{ @
| ¥ Compute [<()=1/30)+1 = V/3+1 =VT=2
and K (5)=\/3& =i+ =\[1g =4

A\fercﬁeﬂo:ée OZ[Chaﬁe: K(s) - kn) _4-2 21
s e Tkl

University Of Kentucky > Elementary Calculus and its 2/10 Chapter2.pdf (2/10)
Applications



Example 5:| A particle is traveling along a straight line. Its position at time ¢ seconds is given by

s(t) = 2t?> + 3. Find the average velocity of the particle as ¢ changes from 0 seconds to 4 seconds.

*c R
ompute S(0)=c2(0)7+3 = J (o) +3 - 4 +3= 3
and S(N=2(4) 43 = A1) +3 =32 13- 35

Averane Rate _S4)-s) 35
veraae Rate of Chanae S0l 3:3;42

O 4-0 T 9

1
Example 6:| Let g(x) = —. Find a value for x such that the average rate of change of g(x) from 1 to z
x moon

equals—ll—o. - =
st
l_CovnPufe ﬁ(\ﬁ:Tl:l
Cmc) ﬁ(K):)L(

- —/\\/ G - x- |
E—O]CCEQ/R&:M: x| =;-X7<='_‘_X [=> | b= | —|

ange X -1 X - | ¥ - x>i| T ox XD T x Tx-t | x
So g

— |
0~ x
40 ‘_]J;lo [L'] X = -lo

fo ] TR x= lo|

Example 7:| Find the average rate of change of k(t) = t3 — 5 with respect to ¢ as ¢ changes from 1 to 1+ h.

1 i

lS_*'COYY\Pc&& Koy = 12-5= |—5_:_-L| Dinomial ThEorc_M <ty
and KO+ = Grs-s=[5BL 3N 43} |.hl+m.h3 _—  DBiromial

Coecfficients
= 1+3h+3n% 3 -5 Lo
= h’+3n"+3h-4 s 3 D

Averageﬂa-l-c O{ChQr\SQ = |’<(|+\’\]— l/\(l) =(l'\3+3hz"3h_q)_ (-4) = l’\3+3hz+3lf\7/q*/<r

lth -1 ~ "
2 )
_ 2L
w
» | Instantaneous rates of change: ‘ The phrase ‘instantaneous rate of change’ seems like an oxymoron,

a contradiction in terms like the phrases ‘thunderous silence’ or ‘sweet sorrow’. However, because of your
experience with traveling and looking at speedometers, both the concept of average velocity and the concept
of wvelocity at an instant have an intuitive meaning to you. The connection between the two concepts is that if
you compute the average velocity over smaller and smaller time periods you should get numbers that are closer

and closer to the speedometer reading at the instant you look at it.

The instantaneous rate of change is defined to be the result of computing the average rate of

change over smaller and smaller intervals.

The following algebraic approach makes this idea more precise.
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Algebraic approach: ‘ Let s(t) denote, for sake of simplicity, the position of an object at time ¢. Our goal

is to find the instantaneous velocity at a fixed time ¢ = a, say v(a). Let the first value be t; = a, and the second

time value to = a + h. The corresponding positions of the object are
s1 = s(t1) = s(a) s9 = s(t2) = s(a+ h),

respectively. Thus the average velocity between times ¢t{ = a and to = a + h is

smosi_slath)—st)  S(@+h) -56)
N €= ¥ S n

To see what happens to this average velocity over smaller and smaller time intervals we let h get closer and

closer to 0. This latter process is called finding a limit. Symbolically:

. s(la+h)—s(a)
v(a) = im ————=.
(a) h—0 h
We can discuss the instantaneous rate of change of any function using the method above. When we
discuss the instantaneous rate of change of the position of an object, then we call this change the instantaneous
velocity of the object (or the velocity at an instant). We often shorten this phrase and speak simply of the
velocity of the object. Thus, the velocity of an object is obtained by computing the average velocity of the

object over smaller and smaller time intervals.

Example 8:| A particle is traveling along a straight line. Its position at time ¢ is given by s(t) = 5t> + 3.

Find the velocity of the particle when ¢ = 4 seconds.
]ﬁComFLHe SA)=5-(4) 2 =5 1L+3= %0 +3 =383
ond Starh)= SCq a3 S (dr) s 3 = S [Icrdhedn +hA+3
=S [Ie+Bh+h™ A +3= B0+ Yoh +SH 43 = Sheqoh 4+ T3

So U,j Chim S(4+h) - s (4) _ L Sh°~+40h+ﬁ—/€’{_ lwwe S h®*L4on _ lim J,,((g—m%)
(\/( - \‘\_70 V-\_ ~ 2o ]{\ - h_,o \~ - \(\—;o )((

o 5o
:\(l\‘z\o Shedo = 5.0 _;qoslqo W\‘{:S/Seconc)

Example 9:| A particle is traveling along a straight line. Its position at time ¢ is given by s(t) = 5t% + 3.

Find the velocity of the particle when ¢ = 2 seconds.
\5+COWYPLA‘(‘E 5{&\: 5(62)§+3: 3_-(-f+3:020+3:023
and  s(a+h)= S (a+h) 3 = ST(2+h)(a+h) + 3 = S‘[Lf 2+ Zh+ hrl 3

=54t dnen® ] +3 = 204200+ ShA43 = S hPa Zone 23
So /)= b 502)-5(3) 1 S heqon 2an -a3 L Sh+20n

ha = =
\(\ l/\ 79 l/'\. ‘(\—70 L\
- lim K(ﬁzh ‘*020) _ i K\uniés/
oo T g T h, S h#20 = 5.0+20 =|R0 | second
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The approach we will see now has the tremendous advantage that it yields a formula for the instantaneous

velocity of this object as a function of time ¢.

Example 10:| A particle is traveling along a straight line. Its position at time ¢ is given by s(t) = 5% + 3.

Find the velocity of the particle as a function of .
+
B ComFu+€ SH)=5¢3+32
and Sleeh)=5 (e 3= 5 [€32¢h e h® 43 - $72, yehsy ShR 3

So /) - \‘,\\Z\O Sw - \Y:rio e +f06|n+55&+5) —(5‘62+3)
B I
=L;w\ e Zalotht s h2a3-523 3 i 0¢h+5 h* _ lim W(o€+sh
-0 V\ - h~7o g W

rote Ehat e JasE s hocoed ehae
N (E)Y=10E. So VR)=(02=00 and

:\lf\‘\:\o [0f+5_}]: [0'6+5_'O =//06 ”\//C/JSIO-LI:HO \Jer:‘-}r{cs oOufl ork
Even if you have a formula for a quantity, knowing how the q{la\ntle‘cf s crﬁqaﬁéﬁlé; cz?; gc;}\;\edy(ill’extra
information that is not obvious from the formula. For example, if s(t) denotes the position of a ball being
thrown up into the air, how high does the ball go? Observe that when the ball is going up it has positive
velocity, because its height is increasing in time, whereas when the ball is going down it has negative velocity,
because its height is decreasing in time. Thus, the instant at which the ball reaches its highest point is exactly

the one when its velocity is 0.

Example 11:

A particle is traveling along a straight line. Its position at time ¢ is given by s(t) = —2t2 + 6t + 5.

(a) Find the velocity of the particle as a function of ¢;

R
\

(b) When is the velocity of the particle equal to 5 feet per second? 2l !
alls

(c) When is the velocity of the particle equal to 0 feet per second?
(@j IS:Compu-ha S(€)= — Q&R+ (€rs
and Scerh)= —2le )P+ 6 () + 5= -2 (€2 2eh+h?) « ¢ (¢ +h) s~
= —2¢R— Gth-2ht g Ge+Ch +5

Seo V) = o S%V\—S/ﬂ= lim (TRe2-4th-2h* Gt +Ches)—(-2e1cer5)
\n
= | TREZ_deh—Rh2 A€ + Ch 57 e .
oo - - . = lim  —denw_gpticn
l Y [N h =02 S
= yw - 4L — _ ;
LD I L R TR T A

B h-e T
=)- q9¢e+¢

Cb) Solve ~/¢) = 5
— He+ 6 = 5 Scbtrad & () Solve ~//¢)=0

Mq&—FC,—@: S -G S{mplr;ﬂ *LLIE-FCD:Q Subﬂmjg
_de= - Druidelbo - 4 S HEtC-G =0 5 L
BN - | . . »—q{—:hc"DlUCdLIb iﬂL
- = — Sim P ‘(7[% -~ - 27
4 — X =7C siaplif
: 2 — xmp \ iﬁ
L | £=2 J
- 5 Secon
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Find the instantaneous rate of change of g(k) = 2k*> + k — 1 at k = 3.

FCompute g ()= R (3)343-1=R-9+3-1 = 13+3-1 =2I-1-20
j(3+h§=92(3+h)a+(3+h)—l=&(3+h](3+h)+3+h—l =o?j:q+gh+3h+hﬂ+h+g

=RLT+Chth? ] thaa= 19 t12h+2h" 4 h+2= I h* L 15h + 20

I“Sfamtar\eous i & (3+th) —a (3) _ \ &2h 413k
= — 4" )é/o - \ z
/Rcrée Q;Chanﬁc #{Yl(:o o B \-\z\d N QU: \](\Z\o cﬂ% =

n-0 = ‘f\;\o 52th[3: c;2.»0+|3: SJ

Example 13:| Find the instantaneous rate of change of g(k) = 2k + k — 1 as a function of k.
2
|SiCOmPu+e j(K)= < KTHK -]

and o (ki) = (Kem) "+ (eoh) 1= 2 [k e akhth*] o lkah -1 = 2L+ YRheghty i+

Thstantancous = lim  SCKEh) —a (K] _ lim é?Rl*‘fKMQhHIHh—l)— (2 k34 k-1)

Rate of Cha nge h=o ~ he h
of aatk = lim QKM UKhr QA A DR iy G Kh 12K 4
h-o " T he -
o N
- lim K(YK+h«) (.
heso =amc Gl het = GK+200) + 1= [qk 1] |

2%
> |The derivative: | The derivative of f with respect to x, at x = x1, is the instantaneous rate of change of

f with respect to x, at x = x1, and is thus given by the formula

lim flx1+h) — f(x1)
h—0 h

Now just drop the subscript ‘1’ from the x in the above formula, and you obtain the instantaneous rate of
change of f with respect to x at a general point x. This is called the derivative of f at x and is denoted with
f(@):

o) — i LEEN =1 @)

h—0 h

| Alternative notations: |

As we remarked earlier, a change in a quantity ¢ is often expressed by the symbol Ag¢ (you should not think of
this as A times ¢, but rather as one quantity!). Thus the above formulas are often rewritten as
A )
r = 3= g
Given a general function f(x), it is often common to think in terms of y = f(x) so that the above formulas are
often rewritten as
Yy = lim Ay _dy
Az—0 Az dx
Often, the information you have about a quantity is not about the quantity itself, but about its rate of change.
This means that you know the derivative of a function, and want to find the function. This occurs frequently
in Physics. Newton’s formula gives information about the acceleration of an object, that is, about the rate of
change of velocity with respect to time. From this, one can often get information about the velocity, the rate

of change of position with respect to time, and then information about the position itself of the object.
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Example 14:| Let f(z) = ma + b be an arbitrary linear function (here m and b are constants).
Use the definition of the derivative to show that f'(z) = m.
|¥ Compute £
MPUTe F¢x)=mx+ b
aV’\CJ 7[(5(4_}\ : m()(+h) “'b = YV\X'!'ML‘LB
|\m (m><+ mh +b) (mx+b) 2 lim X +mh e mx —-

So f(x)— ln'VZ: M) = . h-s n
- I.W\ M - lim \mr\_I

17¢ h—o N

Example 15:| Let f(x) = az® + bx + ¢ be an arbitrary quadratic function (here a, b and c are constants)
Use the definition of the derivative to show that f’(z) = 2az + b.

IS_JrCommee 7C(><\=Cl><;‘+bx+c
and Foxih =a(x+h) b Ocah) ve = G [ x5+ 2chs K‘] + bx+bh+ ¢

”CI><1+QQ><V\+C21'\L+E>< +bhh+c
So 7[/>< - ||m 7[(><+h foa - wv\ (ax?r2axh+ah? +bx+\oh+c>‘(a><1+b><+c>
h—-o —>d
o
= lin ﬂ?ﬁgqthh&%%h%ﬁ%%: lim  axh+ah® + b
. T
- L W aa h+b i
\(\iv;o X)F:Q * \ = ll(\rL\o CQCRX +Q\’\+\D = an+a(0) t+h
:Jozax-l-b ‘

Example 07[6116_ Mean Value Theorem
Let g(z) = 22* +  — 1. Find a value ¢ between 1 and 4 such that the average rate of change

Example 16: x) = 222 . Fi
of g(z) from x = 1 to = 4 is equal to the instantaneous rate of change of g(x) at x = c.
/ -

a=2 7Dy the aboua’g(x\— Ra x+b
x|

+
|= COW\Pufcj’(c): =
b= ﬁ'()«)=o7-9><+l_—

A X thx+c
< =-1

So 3(‘:) A+ GF— e will use &his

belowy

i(X):chQ+><—|

QHJCOMPU41 ‘the aue(qae fale O)C Cl’lgnsg_ 07(\5(%] 7Fram w=l to x=d

5“\ o?(i)"l_l‘o’?(ﬂ -1 =R+l =3-1=g
ﬂ(cﬂ 2N 41 = 2 (1) 49| = 3244 -1-350-1= 35
Y i)_ 35— 33 X L‘JGY\IL Zo ][;W(_')Q Cé[l,ql Sach €hat
i G- 1 T3 ° gy =
Note censc S Few o n Sebre |
C=2.5¢F EI,{\ Slere Cle 41 =L =11 —| S\mp\m&}
bTﬁnaent o He = 10 Divide b o
S Heo 1o <, >
e 579 P lify
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. 2
Let g(x) = 22% + 2 — 1. Find a value x( such that ¢'(zg) = 4. //E\J_ECLH I][ 7[(><) =ax“tbx +c

5ince__@(x]=07><9\+><—] A= Hx+l-] =Y-I Zhen f}x):can+b
b= | =3

Sdﬁl(x)=£°o’2>(+ ) C:‘l &‘[X 3

j‘(ﬂ= x| {g:q

_ 3

So we weed o solve ﬁ%{o}: 4 /L
Chat is  Hxtl= 9

> ‘The geometric meaning of derivatives:‘ Let f(x) be a function and consider its graph y = f(x) in
the Cartesian coordinate system. Consider the following two points P(x1, f(z1)) and Q(z1 + h, f(x1 + h)) on
the graph of f. It should be clear from our discussion that the slope of the straight (secant) line through P
and @

fli+h)— f(z1)  flow1+h) = f(z1) _ Ay
(r1+h)—z1 h Az

is nothing but the average rate of change of f with respect to x, as the variable changes from x; to 1 + h.

As the value of h changes, you get a succession of different lines, all passing through P(x1, f(z1)). As h gets
closer and closer to 0, the lines get closer and closer to what you probably intuitively think of as the tangent

line to the graph of f at the point P(x1, f(z1)).

Y y = f(x)

tangent/ line

Thus the derivative of f at z1, namely
f'(x1), is the slope of the tangent line to
the graph of f at the point P(xz1, f(x1)).

h

“ho

h3

“hy

The tangent line to the graph of a function f at a point P(x1, f(x1)) on the graph is the line
passing through the point P(x1, f(x1)) and with slope equal to f/(x1). Thus, the equation of the tangent

line at the point P(x1, f(z1)) is:

ly=f@)+ @)@ —m) |
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Example 18:| Let f(z) = 2%+ x + 14.

What is the value of x for which the slope of the tangent line to the graph of y = f(z) is equal to 57

) /
7F(><)= NEN X+.'q fofe f(x}:fhe S)ope O][{—]WE f&rl%ew{ Me <o fl\e@mph at /X 7[()())
So a=|,b:|,zc=|[‘| H\E(e)[ore)wa Mce:) <o SOM& 7[/0():5 )

5o =D x+ | chat is D 4i=¢

/ -
(x) = X x|
7 ) st =1 =5~

= Y

-
2

| x=2]

Lot F(o) —a® 4o 414, L=

What is the value of  for which the tangent line to the graph of y = f(z) is parallel to the x-axis?

From ¢he above prablem e Knowd £/ )= o). /_here][ore) Slope = O
We Aeed 4o Solue
x+ ] =0

x+] —1 =0 -
R x= -]

t-z
| x|

Linear approximation of a function at a point:‘ The importance of computing the equation of the

tangent line to the graph of a function f at a point P(z1, f(x1)) lies in the fact that if we look at a portion of
the graph of f near the point P, it becomes indistinguishable from the tangent line at P. In other words, the
values of the function are close to those of the linear function whose graph is the tangent line. For this reason,
the linear function whose graph is the tangent line to y = f(x) at the point P(z1, f(x1)) is called the linear

approximation of f near x = 1. We write

f(@) = f(z1) + f(z)(z — z1) near r = .

For example, to find an approximate value for v/2 we can proceed as Y
follows. Consider the function f(z) = /z. We will learn in Chapter 4
1
that the derivative of f is given by f'(z) = ——=. Thus the equation of 1.9
1 is given by f{w) = 572 q Nk BRRREEEEES =
the tangent line at the point P(1,1) can easily be seen to be P
1

1 1
y=1+=(xr—1) sothat Vr~1+=(x—1) near x=1.
2 2 p

If we substitute z = 2 into the above approximation we obtain the value
3/2 = 1.5, which is very close to v/2 = 1.4142...  The picture on the 0 1 9 T
right illustrates the situation.
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