Chapter Goals:

- Understand the relationship between the area under a curve and the definite integral.
- Understand the relationship between velocity (speed), distance and the definite integral.
- Use the definite integral to compute the average value of a function over an interval

Assignments:

Assignment 18

Assignment 19

► The basic idea:

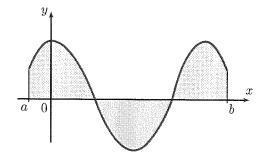
Definite integrals compute signed area.

Definition: The definite integral

$$\int_{a}^{b} f(x) \, dx$$

computes the signed area between the graph of y = f(x) and the x-axis on the interval [a, b].

- If a < b and the region is above the x-axis, the area has positive sign.
- If a < b and the region is below the x-axis, the area has negative sign.
- If the function takes on both positive and negative values on [a, b], the "positive" and "negative" areas will cancel out.



That is, if a < b, then

 $\int_a^b f(x) dx = [\text{area of the region(s) lying above the } x\text{-axis}] - [\text{area of the region(s) lying below the } x\text{-axis}]$

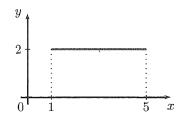
Notation: Given $\int_a^b f(x) dx$, we call f(x) the **integrand**, dx identifies x as the variable, and a and b are called the **limits of integration**.

Applications: Suppose v(t) measures the velocity of an object at time t.

- (a) $\int_a^b v(t) dt$ measures the <u>displacement</u> of the object from t = a to t = b. The displacement is the difference between the object's ending point and starting point.
- (b) $\int_a^b |v(t)| dt$ measures the <u>total distance traveled</u> between t = a and t = b.

If v(t) is always positive, displacement and distance traveled are the same.

Example 1 (Easy area problem): Find the area of the region in the *xy*-plane bounded above by the graph of the function f(x) = 2, below by the *x*-axis, on the left by the line x = 1, and on the right by the line x = 5.

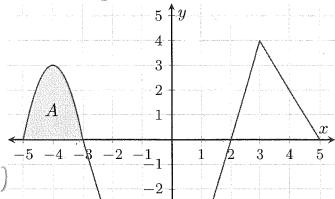


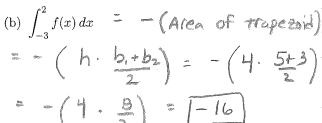
Example 2 (Easy distance traveled problem): Suppose a car is traveling due east at a constant velocity of 55 miles per hour. How far does the car travel between noon and 2:00 pm?

Example 3: Use the graph of f(x) shown to find the following integrals, given that the shaded region has area A. (Area below x-axis counts as negative)

(a)
$$\int_{2}^{5} f(x) dx = \text{ area of mangle}$$

= $\frac{1}{2}bh = \frac{1}{2}(3)(4)$
= $\frac{12}{3} = \frac{6}{3}$





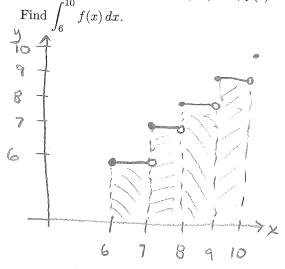
(c)
$$\int_{-3}^{5} f(x) dx = \int_{-3}^{2} f(x) dx + \int_{2}^{5} f(x) dx = -16 + 6 = \boxed{-10}$$

$$\text{trapezoid} \quad \text{triangle}$$

$$\text{below } x \text{-axis} \quad \text{above } x \text{-axis}$$

(d)
$$\int_{-5}^{5} f(x) dx = \int_{-5}^{-3} f(x) dx + \int_{-5}^{5} f(x) dx = A - 10$$
Shaded region answer to (c)

Example 4: Suppose f(x) is the greatest integer function, i.e., f(x) equals the greatest integer less than or equal to x. So for example f(2.3) = 2, f(4) = 4, and f(6.9) = 6.



$$\int_{6}^{10} f(x) dx = \text{area between } \chi - \text{axis}$$
and graph of $f(x)$

$$= \text{area of } H \text{ rectangles}$$

$$= 6(1) + 7(1) + 8(1) + 9(1)$$

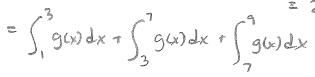
$$= 6 + 7 + 8 + 9$$

$$= \boxed{30}$$

Example 5: Consider g(x) shown here. The graph from x = 3 to x = 7 is a semicircle.

Find $\int_1^9 g(x) dx$.

triangle area = $\frac{1}{2}bh$ = $\frac{1}{2}(2)(2)$

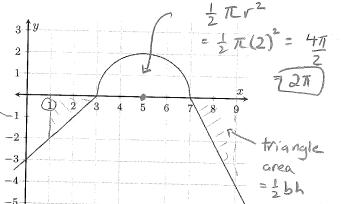


-2 + 2 T - 4

triangle below axis semicircle
above x-axis

triangle below x-axis

= 137-6



Semicircle area

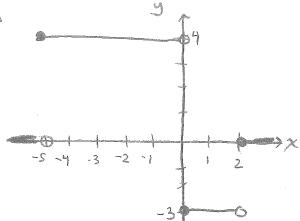
= 2(2)(4)

Example 6: Let

$$f(x) = \begin{cases} 0 & \text{if } x < -5\\ 4 & \text{if } -5 \le x < 0\\ -3 & \text{if } 0 \le x < 2\\ 0 & \text{if } x \ge 2 \end{cases}$$

and
$$g(x) = \int_{-5}^{x} f(t) dt$$
.

Determine the value of each of the following:



(a)
$$g(-10) = \int_{-5}^{-10} f(t) dt = \int_{-5}^{10} 0 dt = \boxed{0}$$

For 106x6-5, f(x)=0 always

(b)
$$g(-1) = \int_{-5}^{-1} f(t)dt = \int_{-5}^{-1} 4 dt = 4(4) = 16$$

base height

$$-s - \frac{1}{1 + \frac{1}{2}} \leftarrow \text{area of rectangle}$$

$$\text{rectangle above x-axis} \qquad \text{fecturgle below}$$

$$\text{(c) } g(1) = \int_{-S}^{1} f(t) dt = \int_{-S}^{1} f(t) dt + \int_{0}^{1} f(t) dt$$

$$= 5(4) - 1(3) = 20 - 3 = 17$$

$$(d) g(6) = \int_{-5}^{6} f(t)dt = \int_{-5}^{6} f(t)dt + \int_{0}^{2} f(t)dt + \int_{2}^{6} f(t)dt$$

(e) What is the absolute maximum of
$$g(x)$$
?

Largest possible area under $f(t)$ is [20]

▶ Some properties of definite integrals:

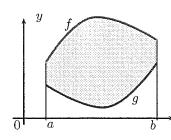
$$1. \quad \int_a^a f(x) \, dx = 0$$

3.
$$\int_a^b (f(x) \pm g(x)) dx = \left(\int_a^b f(x) dx \right) \pm \left(\int_a^b g(x) dx \right)$$

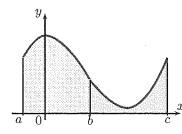
2.
$$\int_a^b k f(x) dx = k \int_a^b f(x) dx$$

5.
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

Geometric illustration of some of the above properties:



Property 3. says that if f and g are positive-valued functions with f greater than g, then $\int_a^b (f(x) - g(x)) dx$ gives the area between the graphs of f and g. However, we can rephrase this as the area under g subtracted from the area under f, which is given by $\int_a^b f(x) dx - \int_a^b g(x) dx$.



Property 4. says that if f(x) is a positive valued function, then the area underneath the graph of f(x) between a and b plus the area underneath the graph of f(x) between b and c equals the area underneath the graph of f(x) between a and c.

Property 5. follows from Properties 4. and 1. by letting c = a.

Example 7: Using the graph of f(x) from Example 3, find the integral $\int_2^5 5f(x) dx$.

$$\int_{\partial}^{5} 5f(x) dx = \int_{\partial}^{5} \int_{\partial}^{5} f(x) dx = \int_{\partial}^{5} (6) = |30|$$
answer to
property 2 above Example 3(a)
allows us to
is 6
factor out the
Coefficient

Example 8: Let

$$\int_{1}^{4} f(x) dx = 3, \qquad \int_{1}^{9} f(x) dx = -4, \qquad \int_{1}^{4} g(x) dx = 2, \qquad \int_{1}^{9} g(x) dx = 8, \qquad \int_{6}^{9} g(x) dx = 3.$$

Use these values to evaluate the given definite integrals.

(a)
$$\int_{1}^{4} (f(x) - g(x)) dx = \int_{1}^{4} f(x) dx - \int_{1}^{4} g(x) dx$$

= 3 - 2 = []

(b)
$$\int_{9}^{1} (f(x) + g(x)) dx = -\int_{1}^{9} (f(x) + g(x)) dx$$

= $-\int_{1}^{9} f(x) dx - \int_{1}^{9} g(x) dx = -(-4) - 8 = 4 - 8 = -4$

(c)
$$\int_{4}^{9} (7f(x) + 10g(x)) dx = 7 \int_{4}^{9} f(x) dx + 10 \int_{4}^{9} g(x) dx$$

$$= 7 (-7) + 10 (6) = -49 + 60 \text{ (1)}$$
See Next page

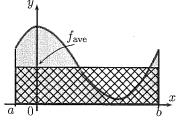
(d)
$$\int_{4}^{6} (g(x) - 5) dx = \int_{4}^{6} g(x) dx - \int_{4}^{6} 5 dx = 3 - 10 = (-7)$$

see next page!

Average Values: The average of finitely many numbers y_1, y_2, \dots, y_n is $y_{\text{ave}} = \frac{y_1 + y_2 + \dots + y_n}{n}$. What if we are dealing with infinitely many values? More generally, how can we compute the average of a function f defined on an interval?

Average of a function: The average of a function f on an interval [a, b] equals the integral of f over the interval divided by the length of the interval:

$$f_{\text{ave}} = \frac{\int_{a}^{b} f(x) \, dx}{b - a}.$$



Geometric meaning: If f is a positive valued function, f_{ave} is that number such that the rectangle with base [a, b] and height f_{ave} has the same area as the region underneath the graph of f from a to b.

(a) To find
$$\int_{1}^{3} f(x) dx$$
:

We know $\int_{1}^{3} f(x) dx + \int_{1}^{3} f(x) dx = \int_{1}^{3} f(x) dx$

$$\Rightarrow 3 + \int_{1}^{3} f(x) dx = -4$$

$$\Rightarrow \int_{1}^{3} f(x) dx = -4 - 3 = 7$$

To find $\int_{1}^{3} g(x) dx$:

We know $\int_{1}^{3} g(x) dx + \int_{1}^{3} g(x) dx = \int_{1}^{3} g(x) dx$

$$\Rightarrow 2 + \int_{1}^{3} g(x) dx = 8$$

(d) To find $\int_{1}^{3} g(x) dx$: We know found in (c) above

$$\int_{1}^{3} g(x) dx + \int_{1}^{3} g(x) dx = \int_{1}^{3} g(x) dx = 6 - 3 = 3$$

To find $\int_{1}^{3} 5 dx$: graph the function $\int_{1}^{3} g(x) dx = 6 - 3 = 3$

To find $\int_{1}^{3} 5 dx$: graph the function $\int_{1}^{3} g(x) dx = 6 - 3 = 3$

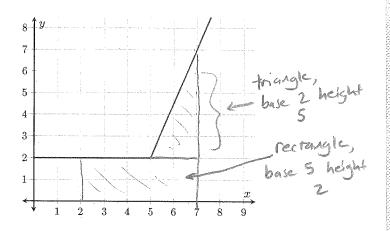
Example 9: Suppose
$$f(x) = \begin{cases} 2 & \text{if } x \le 5\\ \frac{1}{2}(5x - 21) & \text{if } x > 5. \end{cases}$$

Find the average value of f(x) over the interval [2, 7].

$$\int_{3}^{7} f(x) dx = \frac{\text{qrea of }}{\text{rectangle}} + \frac{\text{area of }}{\text{triangle}}$$

$$= 5(2) + \frac{1}{2}(2)(5)$$

$$= 10 + 5 = 15.$$



Average value over [2,7]

$$= \frac{1}{7-2} \int_{2}^{1} f(x) dx = \frac{1}{5} (15) =$$

Example 10: Suppose
$$f(x) = \begin{cases} -3 & \text{if } 4 \le x < 7 \\ 5 & \text{if } 7 \le x \le 9. \end{cases}$$



(a) Find the average value of f(x) on the interval [4, 9].

$$\int_{4}^{9} f(x) dx = -3(3) + 2(5) = -9 + 10 = 1$$

Average value over
$$[4,9]$$

$$= \frac{1}{9-4} \int_{4}^{9} f(x) dx = \frac{1}{5} (1) = \overline{\binom{5}{5}}$$

(b) Find the average rate of change of f(x) on the interval [4, 9]

AROC =
$$\frac{f(9)-f(4)}{9-4} = \frac{5-(-3)}{5} = \frac{8}{5}$$