
MA123, Chapter 2: Change, and the idea of the derivative (pp. 17-45, Gootman)

Chapter Goals: • Understand average rates of change.

• Understand the ideas leading to instantaneous rates of change.

• Understand the connection between instantaneous rates of change and the derivative.

• Know the definition of the derivative at a point.

• Use the definition of the derivative to calculate derivatives.

• Understand the connection between a position function, a velocity function, and the
derivative.

• Understand the connection between the derivative and the slope of a tangent line.

Assignments: Assignment 02 Assignment 03

Roughly speaking, Calculus describes how quantities change, and uses this description of change to give us

extra information about the quantities themselves.

◮ Average rates of change: We are all familiar with the concept of velocity (speed): If you drive a

distance of 120 miles in two hours, then your average velocity, or rate of travel, is 120/2 = 60 miles per hour.

In other words, the average velocity is equal to the ratio of the distance traveled over the time elapsed:

average velocity =
distance traveled

time elapsed
=

∆s

∆t
.

In general, the quantity
y2 − y1
x2 − x1

=
∆y

∆x
is called the average rate of change of y with respect to x.

Note: Often, a change in a quantity q is expressed by the symbol ∆q (you should not think of this as ∆

times q, but rather as one quantity!).

Note: Finding average rates of change is important in many contexts. For instance, we may be interested in

knowing how quickly the air temperature is dropping as a storm approaches, or how fast revenues are increasing

from the sale of a new product.

Note: In this course we use the terms “speed” and “velocity” for the same concept. This is not the case

in some other courses. Thus “instantaneous speed” and “instantaneous velocity” have the same meaning, and

“average speed” and “average velocity” have the same meaning.

Example 1: A train travels from city A to city B. It leaves A at 10:00 am and arrives at B at 2:30 pm. The

distance between the cities is 150 miles. What was the average velocity of the train in miles per hour (mph)?

Do you think the train was always traveling at the same speed?

11



Example 2: A train leaves station A at 8:00 am and arrives at station B at 10:00 am. The train stops at

station B for 1 hour and then continues to station C. It arrives at station C at 3:00 pm. The average velocity

from A to B was 40 mph and the average velocity from B to C was 50 mph. What was the average velocity

from A to C (including stopping time)?

Generally, in computing average rates of change of a quantity y with respect to a quantity x, there is a function

that shows how the values of x and y are related.

◮ Average rates of change of a function:

The average rate of change of the function y = f(x)
between x = x1 and x = x2 is

average rate of change =
change in y

change in x
=

f(x2)− f(x1)

x2 − x1

The average rate of change is the slope of the secant line
between x = x1 and x = x2 on the graph of f , that is, the
line that passes through (x1, f(x1)) and (x2, f(x2)). x

y

0

f(x1)

f(x2)

x1 x2

•

•
y = f(x)

f(x2)− f(x1)

x2 − x1

Example 3: Find the average rate of change of g(x) = 2+ 4(x− 1) with respect to x as x changes from −2

to 5. Could you have predicted your answer using your knowledge of linear equations?

Example 4: Find the average rate of change of k(t) =
√
3t+ 1 with respect to t as t changes from 1 to 5.
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Example 5: A particle is traveling along a straight line. Its position at time t seconds is given by

s(t) = 2t2 + 3. Find the average velocity of the particle as t changes from 0 seconds to 4 seconds.

Example 6: Let g(x) =
1

x
. Find a value for x such that the average rate of change of g(x) from 1 to x

equals − 1

10
.

Example 7: Find the average rate of change of k(t) = t3 − 5 with respect to t as t changes from 1 to 1 + h.

◮ Instantaneous rates of change: The phrase ‘instantaneous rate of change’ seems like an oxymoron,

a contradiction in terms like the phrases ‘thunderous silence’ or ‘sweet sorrow’. However, because of your

experience with traveling and looking at speedometers, both the concept of average velocity and the concept

of velocity at an instant have an intuitive meaning to you. The connection between the two concepts is that if

you compute the average velocity over smaller and smaller time periods you should get numbers that are closer

and closer to the speedometer reading at the instant you look at it.

Definition: The instantaneous rate of change is defined to be the result of computing the average rate of

change over smaller and smaller intervals.

The following algebraic approach makes this idea more precise.
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Algebraic approach: Let s(t) denote, for sake of simplicity, the position of an object at time t. Our goal

is to find the instantaneous velocity at a fixed time t = a, say v(a). Let the first value be t1 = a, and the second

time value t2 = a+ h. The corresponding positions of the object are

s1 = s(t1) = s(a) s2 = s(t2) = s(a+ h),

respectively. Thus the average velocity between times t1 = a and t2 = a+ h is

s2 − s1
t2 − t1

=
s(a+ h)− s(a)

h
.

To see what happens to this average velocity over smaller and smaller time intervals we let h get closer and

closer to 0. This latter process is called finding a limit. Symbolically:

v(a) = lim
h→0

s(a+ h)− s(a)

h
.

Note: We can discuss the instantaneous rate of change of any function using the method above. When we

discuss the instantaneous rate of change of the position of an object, then we call this change the instantaneous

velocity of the object (or the velocity at an instant). We often shorten this phrase and speak simply of the

velocity of the object. Thus, the velocity of an object is obtained by computing the average velocity of the

object over smaller and smaller time intervals.

Example 8: A particle is traveling along a straight line. Its position at time t is given by s(t) = 5t2 + 3.

Find the velocity of the particle when t = 4 seconds.

Example 9: A particle is traveling along a straight line. Its position at time t is given by s(t) = 5t2 + 3.

Find the velocity of the particle when t = 2 seconds.
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The approach we will see now has the tremendous advantage that it yields a formula for the instantaneous

velocity of this object as a function of time t.

Example 10: A particle is traveling along a straight line. Its position at time t is given by s(t) = 5t2 + 3.

Find the velocity of the particle as a function of t.

Note: Even if you have a formula for a quantity, knowing how the quantity is changing can give you extra

information that is not obvious from the formula. For example, if s(t) denotes the position of a ball being

thrown up into the air, how high does the ball go? Observe that when the ball is going up it has positive

velocity, because its height is increasing in time, whereas when the ball is going down it has negative velocity,

because its height is decreasing in time. Thus, the instant at which the ball reaches its highest point is exactly

the one when its velocity is 0.

Example 11:

A particle is traveling along a straight line. Its position at time t is given by s(t) = −2t2 + 6t+ 5.

(a) Find the velocity of the particle as a function of t;

(b) When is the velocity of the particle equal to 5 feet per second?

(c) When is the velocity of the particle equal to 0 feet per second?
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Example 12: Find the instantaneous rate of change of g(k) = 2k2 + k − 1 at k = 3.

Example 13: Find the instantaneous rate of change of g(k) = 2k2 + k − 1 as a function of k.

◮ The derivative: The derivative of f with respect to x, at x = x1, is the instantaneous rate of change of

f with respect to x, at x = x1, and is thus given by the formula

lim
h→0

f(x1 + h)− f(x1)

h

Now just drop the subscript ‘1’ from the x in the above formula, and you obtain the instantaneous rate of

change of f with respect to x at a general point x. This is called the derivative of f at x and is denoted with

f ′(x):

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

Alternative notations:

As we remarked earlier, a change in a quantity q is often expressed by the symbol ∆q (you should not think of

this as ∆ times q, but rather as one quantity!). Thus the above formulas are often rewritten as

f ′(x) = lim
∆x→0

∆f

∆x
=

df

dx

Given a general function f(x), it is often common to think in terms of y = f(x) so that the above formulas are

often rewritten as

y′ = lim
∆x→0

∆y

∆x
=

dy

dx

A preview:

Often, the information you have about a quantity is not about the quantity itself, but about its rate of change.

This means that you know the derivative of a function, and want to find the function. This occurs frequently

in Physics. Newton’s formula gives information about the acceleration of an object, that is, about the rate of

change of velocity with respect to time. From this, one can often get information about the velocity, the rate

of change of position with respect to time, and then information about the position itself of the object.
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Example 14: Let f(x) = mx+ b be an arbitrary linear function (here m and b are constants).

Use the definition of the derivative to show that f ′(x) = m.

Example 15: Let f(x) = ax2 + bx+ c be an arbitrary quadratic function (here a, b and c are constants).

Use the definition of the derivative to show that f ′(x) = 2ax+ b.

Example 16: Let g(x) = 2x2 + x− 1. Find a value c between 1 and 4 such that the average rate of change

of g(x) from x = 1 to x = 4 is equal to the instantaneous rate of change of g(x) at x = c.

17



Example 17: Let g(x) = 2x2 + x− 1. Find a value x0 such that g′(x0) = 4.

◮ The geometric meaning of derivatives: Let f(x) be a function and consider its graph y = f(x) in

the Cartesian coordinate system. Consider the following two points P (x1, f(x1)) and Q(x1 + h, f(x1 + h)) on

the graph of f . It should be clear from our discussion that the slope of the straight (secant) line through P

and Q
f(x1 + h)− f(x1)

(x1 + h)− x1
=

f(x1 + h)− f(x1)

h
=

∆y

∆x

is nothing but the average rate of change of f with respect to x, as the variable changes from x1 to x1 + h.

As the value of h changes, you get a succession of different lines, all passing through P (x1, f(x1)). As h gets

closer and closer to 0, the lines get closer and closer to what you probably intuitively think of as the tangent

line to the graph of f at the point P (x1, f(x1)).

x

y

0

f(x1) •

x1
• • • • • •

Q

Q1

Q2

Q3

Q4

h

h1

h2

h3

h4

•
P

•

•

•
•

•

tangent line

y = f(x)

Thus the derivative of f at x1, namely
f ′(x1), is the slope of the tangent line to
the graph of f at the point P (x1, f(x1)).

Definition: The tangent line to the graph of a function f at a point P (x1, f(x1)) on the graph is the line

passing through the point P (x1, f(x1)) and with slope equal to f ′(x1). Thus, the equation of the tangent

line at the point P (x1, f(x1)) is:

y = f(x1) + f ′(x1)(x− x1) .
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Example 18: Let f(x) = x2 + x+ 14.

What is the value of x for which the slope of the tangent line to the graph of y = f(x) is equal to 5?

Example 19: Let f(x) = x2 + x+ 14.

What is the value of x for which the tangent line to the graph of y = f(x) is parallel to the x-axis?

Linear approximation of a function at a point: The importance of computing the equation of the

tangent line to the graph of a function f at a point P (x1, f(x1)) lies in the fact that if we look at a portion of

the graph of f near the point P , it becomes indistinguishable from the tangent line at P . In other words, the

values of the function are close to those of the linear function whose graph is the tangent line. For this reason,

the linear function whose graph is the tangent line to y = f(x) at the point P (x1, f(x1)) is called the linear

approximation of f near x = x1. We write

f(x) ≈ f(x1) + f ′(x)(x− x1) near x = x1.

For example, to find an approximate value for
√
2 we can proceed as

follows. Consider the function f(x) =
√
x. We will learn in Chapter 4

that the derivative of f is given by f ′(x) =
1

2
√
x
. Thus the equation of

the tangent line at the point P (1, 1) can easily be seen to be

y = 1 +
1

2
(x− 1) so that

√
x ≈ 1 +

1

2
(x− 1) near x = 1.

If we substitute x = 2 into the above approximation we obtain the value
3/2 = 1.5, which is very close to

√
2 = 1.4142... The picture on the

right illustrates the situation.
x

y

0 1 2

1.5√
2

1 •

y =
√
x

P
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