SOLUTIONS

MA123, Chapter 6;: Exponential and logarithmic functions

lChapter GO&lST] e Review properties of exponential and logarithmic functions.

e Learn how to differentiate exponential and logarithmic functions.

e Learn about exponential growth and decay phenomena.
Assignments: Assignment 10 Assignment 11 Assignment 12

Recall the following from Chapter 1.

IExponential notation: | If @ is any real number and n is a positive integer, then the n-th power of a is

a*=a-a- ... q
N e’

n times
The number a is called the base whereas n is called the exponent.

The first and second laws of exponents below allow us to define a™ for any integer n.
Now, we want to define, for instance, a'/? in a way that lDeﬁnition of rational exponents:| For any
is consistent with the laws of exponents. We would like:

rational exponent m/n in lowest terms, where m
3 and n are integers and n > 0, we define
<al/3> = a(1/3)3 = al = a; thus &1/3 = \S/ZZ-
a™™ = (a'/™™ = (/a)™  or equivalently

am/n — (Gm)l/n = Pfgm
M If n is even we require that a > 0.
In the table below, a and b are real numbers (# 0 if needed) and the exponents = and y are rational numbers.

So, by the definition of nth root, we have:

: 3.) a®a¥ = a®tY
|Lavvs of exponents ‘ (3.) a®a¥ =a (6.) (ab)® = a®b®
(1) a® =1 (4.) % =a"Y a\* o
. ’ ") Tw
(2) a™% = = (5.) (a®)¥ =a™
Now, let a > 0 be a positive number with ¢ # 1. Thus Graphs of exponential functions:|

far o® is defined for z a rational number. So, what does,
for instance, 5Y2 mean? When z is irrational, we succes-

sively approximate z by rational numbers. For instance, f(z)=a” (a>0, a#1)
has domain R and range (0, c0). The graph of f(z)

has one of these shapes:

The exponential function

as
V2~ 1.41421 ...

we successively approximate 5Y2 with Y
1.4 1.41 1414 1.4142 1.41421
5h4 BB , b , b e

In practice, we simply use our calculator and find out

5v2 ~ 9.73851 . ..

» | Exponential functions: I

1
Let a > 0 be a positive number with a # 1. The ] S~
0

exponential function with base a is defined by z 0 T

flz)=a” f(z)=a*

for all real numbers z. f(z)=a® for a>1 for 0<a<x1
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The most important base is the number denoted .
Since 2 < e < 3, the graph of

by the letter e. The number e is defined as

y = €” lies between the graphs
e = Lm <1+_> of y =2% and y = 3%. " <1+l>
n n

n—r00

Correct to five decimal places (note that e is an

irrational number), e = 2.71828. 1| 2.00000
51 2.48332

10| 2.59374

The natural exponential function: 100 | 2.70481

1,000 | 2.71692
10,000 | 2.71815
100,000 | 2.71827
1,000,000 | 2.71828

The natural exponential function is the
exponential function
flz)=¢

with base e. It is often referred to as the ex-

ponential function.

» |Inverse of a function:| Recall that two functions f(z) and g(z) are said to be inverses of each other if

flgl@) =2z and  g(f(z)) ==

Intuitively, inverse function pairs are in some sense “opposites.” The three most familiar inverse function pairs

”

are: “addition and subtraction,” “multiplication and division,” and “square and square root”:

e g(t)y=t—c and h(t)=t+c are inverse to each other, for any real number c.
e g(t)=1t/k and h(t)=k-t are inverse to each other, for any real number k # 0.
e g(t) =+t and h(t) =1 are inverse to each other, provided ¢ > 0.

> lLogarithmic functions: | Every exponential function f(z) = a®, with @ > 0 and a 5 1, is a one-to-one

function by the horizontal line test. Thus, it has an inverse function. The inverse function f~!(z) is called the

logarithmic function with base a and is denoted by log, .

In other words, log, (z) is the exponent to which the

Let a be a positive number with || base a must be raised to give z.

a # 1. The logarithmic function with base a,
denoted by log,, is defined by

]Properties of logarithms: l
(1) log, (1) =0 (3.) log,(a®) =2
(2‘) loga (a) =1 (4) alOga (=) = T

y=log,(z) <= da¥=u.

Since logarithms are ‘exponents’, the laws of exponents give rise to the laws of logarithms:

Let a be a positive number, with a # 1. Let A, B

and C be any real numbers with A > 0 and B > 0. Change of base:

For some purposes, we find it useful to change from

L fl ithms:
‘ aws of logarithms I logarithms in one base to logarithms in another

(1) log, (AB) = log, (A) + log, (B); base. One can prove that:

4 lo
(2.) log, <§> = log, (4) — log, (B); 8% = og, (0)

(3.) log, (A%) = C log, (A).
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— O
If a one-to-one function f has domain A Y v 2

and range B, then its inverse function f~! has domain l' ' y=—z
B and range A. THUS, the function y = log, (z) is 1 ”
defined for z > 0 and has range equal to R. More ,' ///
precisely: ;o
/ . = log, (:1:)
IGraphs of logarithmic functions: | 1 ,///
The graph of f~1(z) = log, () is obtained by reflecting e=m’
the graph of f(z) = o® in the line y = z. ,’O 1 L
(The picture below shows a typical case with ¢ > 1.) .

The point (1,0) is on the graph of y = log, (z) (as log, (1) = 0) and the y-axis is a vertical asymptote.

I Common logarithms:

The logarithm with base 10 is called the common logarithm and is denoted by omitting the base:

|Log (z) = logyo ().

TN atural logarithms:‘ Of all possible bases o for logarithms, it turns out that the most convenient choice

for the purposes of Calculus is the number e.

The logarithm with base e is called the natural

| logarithm and is denoted by In:

]Properties of natural logarithms:]

[In (@) i=log. (@).| (1) (1) =0 (3) () =2
‘We recall again that, by the definition of inverse functions, we 2) In(e)=1 (4) n(@ — o
have
y=In(x) > e¥ =z,

for h valves very clase 1o |
Zem, vl Fird ales af Q;Mf

> [Derivatives] very close to 1 L

h—1
By filling the table below we can convince ourselves that %in%) £ =1
—
h | -01 -001 —0001 —0.0001 —0.00001 0.00001 0.000L 0.001 0.01 0.1

hoq |95 995 9995 L9995 .99999S [ oodses 1. oS 1,005 [, 005 l.o5r)

e

Now, let f(z) = e®. Using the definition of the derivative and the rules for exponential functions, we have that

d . flz+h)— f(z) esth o el — 7 —e‘”( e"——l) _

= lim —————— = lim lim
dz h—0 h—0 h h—0 h h—0

d

a;(@m) =¢e* or (ez)/ = %,

Moreover, it follows by applying the chain rule that

d d T X
EE( 9(@)) = £9(@) %(g(w)) or (e9®Y = &9 g/ (3).
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We can use the derivative of €* and the relationship between the exponential and the natural logarithmic
functions to find the derivative of the function In(z). Namely, take the derivative with respect to z of both

sides of e™®) =z We obtain

d Inzy _ d Inz d _ . a — 1
da:(e )= da:(m) or e dm(lnx)—l or dx(lnm)— =

I @)= o (@)=

T .

Moreover, it follows by applying the chain rule that

d 1 d /
@) = 75 6E@) o (o) =

g'(z)
g(z)’

‘What about more general derivatives?l Observe that we have the identities

In (z)
()

Thus using the previous results we obtain the following formulas for the derivatives of general exponential and

o = eln(a“’) — e:z:ln(a) loga( )

logarithmic functions

—(a®) = a"In(a) and d%j—(loga (z)) = T ()’

Let us consider the function f(z) = 3*. In Example 16 of Chapter 4, we saw that an approximation
for f’(1) was given by the value 3.2958. Using the above formula we have that f/(z) = 3%In(3), so that the
exact value for f'(1) is 3In(3) =1n(27).
Example 1:| Find the derivative with respect to 2 of f(z) = **. Evaluate f/(z) at z = 1/4.
Compute f"(z), f”(z) and f1%(z). Can you predict what L;uhf)nth derivative £ (z) of f(x) looks like?
I _ KAt A (s, !
F'ey= He F5) = He V- deo's He
£f0) o Hx

£'o0 - 47e”, ) e e 4 e

() /fu
]C (XJ“‘ L%‘/\Q 7{1 Cach time e c{ﬁ‘%ﬁmﬁcz z’” LJe. Mu/h/? &u},
T 53 ansiher factof of z?/

Example 2:| Find the derivative with respect to z of g(z) = z%e®. Evaluate ¢'(z) at z = 1.

— IS x* ‘
@ (X:} = X € + @%(2,%’,) E\praoéa«:ff” rule.

L 5 a%‘ ' b ) B
’ . &wmwii;
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~ Suppose f(t) =e . Find 7 fﬁ) - @

(3t- )

cijﬁ j/j { L
— - (t) = .l TS .
At ) VQH‘V\J (2; [ﬁix m:") j
€ fule o P é):;uf ' 7, e m,ﬁ‘ggé e

needs P /*aoéu(}_g.

Suppose f(3) =4, f'(3) =6, g(3) =5, ¢(3) =2, and H(z) = f(z)e?™. Fule

Find the derivative EZ—I?-
dz

=3 | Copy éem\f +  Cop Yy der/
AH ! - la 3@*’} ()
e !‘” (/ g - - . { (j /
" | (x) To) e < (<) + o . £ix)
{ ) (3] )
éﬂ/ s H'G) - Fa) el q') + ea fes)
Il 5 . s —
a2 s ette) - Bel-ce -fae”

Example 5:| Find the derivative with respect to z of f(z) =zln(z). € eeds

Oi)ﬁ'fj deed + Copy é:‘ttff’)‘\f ,f) FOG[LAC’?" i (éma
B )

£ tx) "/ X Lo v Py | t<—m>1\ Simpti fied

pe

= LLQA%’ 7 SiMPUﬁCJ

Example 6:| Find the derivative with respect to z of y =1In(bz+1). &« d&f

o ) Pr@d"‘(ff (”

s wot peed
ule

G DT ;}’%M?&ﬁ 2 QI

e Smplified
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putrsicle

Find di(msx ~7+5) )

ngide

- L (1ax 7 ex)
}‘g{ +5
M/Qx -
3x" - 7x %5

Find the derivative with respect to z of f(z In 1n ln
{
fx) = / C [

,Qm /ﬁvx o ) v»é)m 7.9 ?(
outside. ) del e 11 qelrost
Lo Qo

Example 9:| Find the derivative W1th respect to of h(z) = @' +3In(a),

PRy ]
R(x) = 6 | ~ (Z?fi t 3'3—%7 ’
e rule i/\\s{?‘w@ j

’x’%f’bﬁm

of

€ (2y + %)
Y
Suppose f(8) =11, f/(8) =5, g(2) =1, ¢'(2) =3, and H(z) = f(z® + In (g(z))).

. ... dH .,
Find the derivative —— [OUYS 1de (s 1o
z=2 e

H\(‘X) = ZE:‘(/)(?+ ,wafj(yj)) o EXL + U 3((:‘(3
l o j(z()‘
H (Z) = f (27 + @A(@éL}})v (322’ PR ,6%,;})

f 27 . 5@5
= £ (80 . (12 + Wé)

- 5 o (1s) = @
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{Exponential growth and decay]

Let Q(t) denote the amount of a quantity as a function of time. We say that Q(¢) grows exponentially as a

function of time if
Q(t) = QO ert7
where Qg and r are positive constants that depend on the specific problem and ¢ denotes time. When ¢ = 0,

we see that

Q0)=Qoe =Qo 1= Qo.

Thus Qg denotes the amount of the quantity at ¢ = 0. In other words, @y is the initial amount of the quantity
at time ¢ = 0. Note that Q(¢) > 0 because Qg > 0 and €" > 0.

Taking the derivative and using the chain rule, we see that
Q) =Qo r-e =7r(Qoe™) =rQ(t). )

Since |Q'(¢) =rQ(t),| it follows that if a quantity grows exponentially, then its rate of growth is propor-
tional to the quantity present, and the proportionality constant is given by 7. Since r > 0 and Q(¢) > 0, we
have Q'(t) > 0, as expected because Q(t) is increasing.

Some quantities decrease exponentially. In this case we have Q(t) = Qpe™ ™, where Qo and r are positive
constants. Note that we have Q(0) = Qo and

QW) =Qo (-1) e =—r(Que™) = —r Q)

Thus ‘ Q') = —r Q). } We see that @Q'(¢) < 0 because —r < 0 and Q(t) > 0. Thus the rate of increase of

Q(t) is proportional to the quantity present, and the proportionalityconstant is given by —r.

Suppose that a function g(z) satisfies the property that the slope of the tangent line to the graph of y = g(z)
at any point P is proportional to the y-coordinate of P, ie., ¢'(zp) = r- g(zp). Then it can be shown that
there are constants C' and r such that g(z) = Ce™. In fact, r is the constant of proportionality because

g'(z) =rCe™ =rg(z). /
Example 11:| The graph of a function g(z) passes through the point (0,5). Suppose that the slope of the

tangent line to the graph of y = g(z) at any point P is 7 times the y-coordinate of P. Find g(2).
We. ale 9 e at \«jf = "7(:1 So e kaond The
P

76/\5‘7\‘@/’\ gé @F “the f{« ‘ 7 04
] e Y m jg?{} - 30 e

)= 5

A

o

Since. the greph goes Turodgy (0,5)  we baod 9 (¢
el ” L , _
4> 5= 9o & P 9, -5 The foachon i 35;} ~S5e

=

Thas,  90) = 5@7M -/ 5
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Applications

Many processes that occur in nature, such as calculation of bank interest, population growth, radioactive decay,
heat diffusion, and numerous others, can be modeled using exponential functions. Logarithmic functions are

used in models for the loudness of sounds, the intensity of earthquakes, and many other phenomena.

lgompound interest ! is calculated by the formula: Continuously compounded interest
r\ ™ is calculated by the formula:
P (t) = Pyert |
where .
P(t) = principal after ¢ years where o
Py = initial principal P(t) = principal after ¢ years
r = interest rate per year Py = initial principal
n = number of times interest is compounded per year r = Interest rate per year
t = number of years i = number of years

n
The interest paid increases as the number n of compounding periods increases. If m = o then:

nfoe2)"=al(2) <m0 a0 T

m
As n becomes large, m also becomes large. Since li_r)n <1 + —) = e we obtain the formula for continuously
m—co m

compounded interest.

Example 12:| If $10,000 is invested at an interest rate of 6%, find the value of the investment at the end of

8 years if the interest is compounded continuously. = 06

L 06(8)
P(8) = looo

| # 48

lExample 13:| How many years will it take an investment to quadruple in value if the interest is compounded
continuously at a rate of 7%? «— (7,071

v [P IG1co. 9y

Suppose. we invest Bl How long onhl we  lave FHC

Solve fort T e.o7@- SO MU 07T

07t - ‘
0w = bae - L years | 1198 34?—af§'£7
07 7

a7




r=.05
[

Example 14:| An amount of Fy dollars is invested at 5% interest compounded continuously‘ Find Fy if at

the end of 10 years the value of the investment is $20, 000.

Qooon = [, e , F, 4 =—F——=
, € -
T S
I
e be N |
e s {“« P12130. ¢

S;Q)()_J é)g (?,

Exponential models of population growth:i

IExponential growth modell If Py is the
initial size of a population that experiences
exponential growth, then the population P(%)
at time ¢ increases according to the model

The formula for population growth of several species is
the same as that for continuously compounded interest.
In fact in both cases the rate of growth of a population
(or an investment) per time period is proportional to the

size of the population (or the amount of an investment). P(t) = Rye™

Biologists sometimes express the growth || where r is the relative rate of growth of the

rate 7 in terms of the doubling-time tg, the time population (expressed as a proportion of the
In (2) population).

required for the population to double in size: r =

to

If £y denotes the doubling-time of a population, we can rewrite the expression for P(t) as follows

/4
P(t) = Pye™ = Ry e @/)t = p, <6h‘ (2)> " pate

Example 15:| A bacteria culture starts with 2,000 bacteria and the population triples after 5 hours. If we

express the number of bacteria after ¢ hours as o wll be Hae, inihal
y(t) = ae’ V(/%é}mjﬁ’_,) LoD .
find a and b. To solve for b é’)(’;)

After 5 hours, ere ale. 6oog cells - 6000 = Joon @,
>3- ng = M3 =5 = |- ‘Q“%fgv

T%‘Ad;/ j )= 2000 éff ’ ,,, wh e = 20ag f;smg}

Example 16:| A bacteria culture starts with 5,000 bacteria and the population quadruples after 3 hours.

Find an expression for the number P(t) of bacteria after ¢ hours. l(*hm Lf)

&D/\/a for é;: = b?} 2 Lt - 3b> - éw—%

w,{j 3
Pé’b) 5{)00 6 F\éa#& !:)é' SA (A)¥“i’%«*\ &Aj Number  of- Cé“i)

5&”3 1, and aftec 3 howrs ere gre é{»@
F gou STart wilh were, equanon
nll ﬁ{M‘Q?#'%ﬁE o fals r“f%rM)
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Example 17:| If the bacteria in a culture doubles in 3 hours, how many hours will it take before 7 times the

original number is present?

Step 1 fad PR).

b3 D2
(5 Solve by L 2 = ﬁj) = Q"NZ = 3b = é =
(G %} 4 ~

P/ﬁ;33 Z@

Sepl. Solve fr Bir)zi)e é%m writ Py é«m? {OAJ Al we have /P %
/P = = v
c ke S T7re T s bayeBe
divide byp,
~ B 422 houts

S

Example 18:| If the world population in 2010 was 6 billion and it were to grow exponentially with a growth

1
constant 7 = 0 In (2), find the population (in billions) in the year 2070.

Let P(t) be the papwm‘m L _years after 2910 (ia bi'llows)

So Pe) = 6 C 3‘) i The wear 2070 is Go years edtel écw)

, Durygo) 20047 L

- C/)(/L‘#) = [@Lf b;ifﬁr{_}/\ Ped)ggg_] ‘03 E;l‘oper‘hj

Badioactive decay:

. ) " Radioactive d model:
Radioactive substances decay by spontaneously emitting | adloactive cecay mode |

radiation.  In this situation, the rate of decay is If Qg is the initial quantity of a radioactive sub-
proportional to the mass of the substance. stance with half-life £, then the quantity Q(¢)
This is analogous to population growth, except that the || remaining at time ¢ is modeled by the function
quantity of radioactive material decreases. Q(t) = Qoe "t

Physicists sometimes express the rate of b _ In(2)

decay in terms of the half-life, the time required for where = to

half the mass to decay.

If t5 denotes the half-life of a radioactive substance, we can rewrite the expression for Q(t) as follows

t/to

—t/to
Q(t) — QOB Tt Qoe (In (2) /%0)-¢ QO (eln(2)> __ Q02 t/te QO( ——1>t/to _ Q0< )

Example 19:| The half-life of Cesium-137 is 30 years. Suppose we have a 100 gram sample. How much of

the sample will remain after 50 years?

2
5&31«@ fnr A IF we s7alt wilh /gm/v%

affee 30 years we have 3 grapmr 4= sz@”) = g, 30b
“ z
= =, Q"”"“ ‘Q‘f‘%: V

Afrer 5p yeals, Ij{%)f"[/og é\%}so Grams ( ~ 3].5 grams
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