MA123 — Elem. Calculus Fall 2014 SOLUToNS

Exam 3 ' 2014-11-20 Name: Sec.:

Do not remove this answer page — you will turn in the entire exam. You have two hours to do this exam.
No books or notes may be used. You may use an ACT-approved calculator during the exam, but NO
calculator with a Computer Algebra System (CAS), networking, or camera is permitted. Absolutely no
cell phone use during the exam is allowed.

‘The exam consists of multiple choice questions. Record your answers on this page. For each multiple
choice question, you will need to fill in the box corresponding to the correct answer. For example, if (a) is

correct, you must write
® © @

Do not circle answers on this page, but please circle the letter of each correct res‘ponse in the body of the
exam. [t is your responsibility to make it CLEAR which response has been chosen. You will not get credit
unless the correct answer has been marked on both this page and in the body of the exam.

GOOD LUCK!
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Multiple Choice Questions
Show all your work on the page where the question appears.
Clearly mark your answer both on the cover page on this exam
and in the corresponding questions that follow.

L. Find the largest value of A such that the function f(t) = t* — 9t — 48t + 1 is decreasing for all ¢ in
he interval (0, A). .
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2. Suppose ¢'(t) = (t — 7)(t — 8)%(t — 9). Find the largest value of A such that the function g(t) is
decreasing on the interval (7, A). '
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3. Suppose the derivative of H(s) is given by H'(s) = —(s® + 9)(s> + 1). Find the value of s in the
interval [—10, 10] where H(s) takes on its minimum.
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4. Suppose the derivative of g(t) is ¢’(t) = 7(t — 2)(t — 4). For ¢ in which interval(s) is g concave up?
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- 5. The following is the graph of the derivative, f'(z), of the function f(z).
Where is the regular function f(z) increasing?
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6. The following is the graph of the derivative, f'(z), of the function f(z).
Where is the regular function f(z) concave down?
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7. Two trains leave the same station at different times, one traveling due East, and the other traveling
due North. At 2pm the eastbound train is traveling at 45 mph and is 300 miles from the station,
while the northbound train is traveling at 60 mph and is 400 miles from the station. At what rate is

the distance between the trains increasing? A= distance. Srom Ceostbovad foan o Statian
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8. Find the point in the first quadrant that lies on the hyperbola y? — 22 = 3 and is closest to the point

6,0).
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9. A farmer builds a rectangular pen with 7 vertical partitions (8 vertical sides) using 800 feet of fencing.
What is the maximum possible total area of the pen?
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10. Boyle’s Law states that when a sample gas is compressed at a constant temperature, the pressure P
and volume V satisfy the equation PV = ¢, where c is a constant. Suppose that at a certain instant
the volume is 59 cubic centimeters, the pressure is 5 kPa, and the pressure is increasing at a rate of

4 kPa/min. At what rate is the volume decreasing at this instant?
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11. A ladder 20 feet long rests against a vertical wall. If the bottom of the ladder slides away from the
wall at a rate of 3 feet per second, how fast is the top of the ladder sliding down the wall (in feet per
second) when the bottom of the ladder is 16 feet from the wall?
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12. Estimate the area under the graph of —z? + 20z for z between 2 and 8, by using a partition that
consists of 3 equal subintervals of [2, 8] and use the right endpoint of each subinterval as a sample

point. ax=bo g2 ¢,
Poslities: " 3 3

) 488 ) R, heght = Fy= - 4™ 2004)= ¢4
(b) Qz %ﬁfg% = fle) = 0%+ 2000)= &4
(c) 560 | §
(@) 432 By height = Frg)- -8™ 2068)- ¢
(e) 368

A=z ¢4 (2) + 8Y4(z)y v GL(2) = 128+ I8+ 192 = 485

5




13. A train travels in a straight westward direction along a track. The speed of the train varies, but it
is measured at regular time intervals of 1/10 hour. The measurements for the first half hour are:

time 0 1 2 3 4 5
speed 0 6 8 16 22 23

Estimate the total distance (in miles) traveled by the train during the first half hour by assuming
the speed is a linear function of t on the subintervals. The speed in the table is given in miles per
hour. Use all six speed measurements in your estimate. T
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14. One way to approximate [ 2% dz is with the sum Z ((A (67"2(3+M“’))). What is the best
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15. Suppose you estimate the area under the graph of f(z) = z® from z = 6 to z = 26 by adding
the areas of the rectangles as follows: partition the interval into 20 equal subintervals and use the
right endpoint of each interval to determine the height of the rectangle. What is the area of the 6th
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1. Summation formulas:

& b — n(n+1)
k=1 2
Zn:kz _nn+1)(2n+1)
k=1 6

2. Areas:

(a) Triangle A= b?h

(b) Circle A =nr?
(c) Rectangle A=lw

hi+ hg

5 b

(d) Trapezoid A=
3. Volumes:
(a) Rectangular Solid V = lwh
(b) Sphere V = %mﬁ
(c) Cylinder V =mr’h
(d) Cone V = %W’I‘Qh
4. Distance:

(a) Distance between (z1,vy1) and (z2,ys)

D= +/(z2—21)>+ (y2 — 11)?




