Chapter 5: Practice/review problems

The collection of problems listed below contains questions taken from previous MA123 exams.

Derivatives

[1]. If $f(x) = 6x^2 + 3x - 1$, find f'(x).

(a) 6x + 1 (b) 12x + 3 (c) 12x - 1 (d) 2x + 3 (e) 2x + 5

[2]. If $f(x) = x^3 + 4x^2 + 2x + 1$ then f'(x) =

(a) $3x^2 + 8x + 3$

(b) $x^2 + x + 1$

(c) $3x^2 + 8x + 2$

(d) $3x^2 + 8x + 1$

(e) $3x^2 + 4x + 1$

[3]. If $f(x) = x^3$ then

 $\lim_{h\to 0} \frac{f(1+h)-f(1)}{h}$

(**Hint:** Relate the limit to the derivative of f(x).)

(a) 0

(b) 1

(c) 2

(d) 3

(e) 4

[4]. Suppose $f(t) = t^3 - t^2 + t + 1$. Find the limit

$$\lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

(**Hint:** Relate the limit to the derivative.)

(a) -1

(b) 0

(c) 1

(d) | 2

The limit does not exist

[5]. If $Q(s) = s^7 + 1$, find

$$\lim_{h \to 0} \frac{Q(1+h) - Q(1)}{h}$$

(a) 2

(b) 5

(c) 6

(d) 7

(e) 8

[6]. If f(x) = |x-1| find $\lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$

(a) 3

(b) -3

(c) 1

(d) -1

Does not exist (e)

[7]. Let f(x) = x|x| - x. Find the derivative, f'(0), by evaluating the limit

$$\lim_{h \to 0} \frac{f(h) - f(0)}{h}$$

(b) -1 **(c)** 0

(d) 1

(e) Does not exist

[8]. Let [x] denote the greatest integer function. Recall the definition:

[x] equals the greatest integer less than or equal to x.

How many points are there in the interval (1/2, 9/2) where the derivative of [x] is not defined?

(a) 1

(b) 2

(c) 3

(d) 4

(e) 5

The product rule

[9]. Suppose that h(x) = f(x)g(x). Assume that f(2) = 3, f'(2) = -2, g(2) = 1, and g'(2) = 5. Find h'(2).

(a) -20 (b) -17

(c) 11

(d) 13

(e) Cannot be determined

[10]. If $h(t) = (t-1)(t+1)(t^2+1)$ then h'(2) equals

(a) 0

(b) 4 **(c)** 8

(d) 16

(e) 32

[11]. Let k(x) = (x+3)(x+4)(x+1). Find k'(x).

(a) 12

(b) $3x^2 + 16x + 19$

(c) $3x^2 + 18x + 20$

(d) $3x^2 + 14x + 16$

(e) 1

[12]. If $R(x) = (x-2)(x^2-2)(x^3-2)$, find R'(2)

(a) 0

(b) 12

(c) 48 (d) -8 (e) -6

The quotient rule

[13]. If $f(x) = \frac{x-1}{x+1}$ then f'(x) =

(a) $\frac{2}{x^2+1}$ (b) $\frac{2}{(x+1)^2}$ (c) $\frac{-2}{(x+1)^2}$ (d) $\frac{-2}{x^2+1}$ (e) $\frac{-2}{(x-1)^2}$

[14]. Suppose that $f(x) = \frac{x^2 + 1}{x + 4}$. Find f'(-3).

(a) -8 (b) -9 (c) -10 (d) -14 (e) -16

[15]. Find Y'(s) if $Y(s) = \frac{1}{4s^2} - \frac{5}{s}$.

(a) $\frac{5}{2}s^{-3} + s^{-2}$

(b) $-\frac{1}{2}s^{-3} + 5s^{-2}$ (c) $-\frac{2}{5}s^{-3} + s^{-2}$

(d) $\frac{1}{2}s^{-3} + 5s^{-2}$ (e) $-2s^{-3} - 3s^{-2}$

[16]. If	$F(t) = \frac{3t+1}{t-1}$	then $F'(t) =$
-------------------	---------------------------	----------------

(a)
$$-4/(t-1)^2$$
 (b) $-4/(3t+1)^2$ (c) $-2/(t-1)^2$ (d) $-3/(t-1)^2$ (e) $-2/(t-1)$

[17]. Let
$$T(x) = \frac{g(x)}{f(x)}$$
. If $f(2) = 3$, $f'(2) = 4$, $g(2) = 5$, and $g'(2) = 6$, find $T'(2)$.

- (a) $\frac{38}{9}$ (b) $\frac{38}{25}$ (c) $\frac{2}{25}$ (d) $-\frac{2}{9}$ (e) 38
- [18]. Evaluate the derivative, H'(1) if

$$H(s) = \frac{2s}{s+1}$$

- (a) 2/9 (b) 4/9 (c) 1/2 (d) 3/2 (e) 8/9
- [19]. Suppose the cost, C(q), of stocking a quantity q of a product equals

$$C(q) = 12 + 3q + \frac{8}{q}.$$

The rate of change of the cost with respect to q is called the marginal cost. What is the marginal cost when the cost equals 23 and the cost is decreasing?

- (a) -5 (b) -1 (c) 0 (d) 1 (e) 5
- [20]. Suppose the cost, C(q), of stocking a quantity q of a product equals

$$C(q) = \frac{100}{q} + q$$

For which positive value of q is the tangent line to the graph of C(q) a horizontal line?

- (a) 1/100 (b) 1/10 (c) 1 (d) 10 (e) 100
- [21]. Suppose u(t) and w(t) are differentiable for all t and the following values of the functions and derivatives are known: u(7) = 2, u'(7) = -1, w(7) = 1, and w'(7) = 9. Find the value of h'(7) when

$$h(t) = \frac{w(t) + 5}{u(t)}.$$

- (a) 3 (b) 6 (c) -3 (d) 12 (e) -6
- [22]. Suppose $f(t) = \frac{F(t)}{t}$ and F(1) = 2, F'(1) = 6. Find f'(1).
 - (a) 2 (b) 4 (c) 1 (d) -4 (e) -1

- [23]. If $f(x) = \frac{-x}{x^2 1}$ then f'(x) =

- (a) $\frac{-x^2-1}{(x^2-1)^2}$ (b) $\frac{1}{2x}$ (c) $\frac{-x^2-1}{x^2-1}$ (d) $\frac{x^2+1}{x^2-1}$ [e) $\frac{x^2+1}{(x^2-1)^2}$

Tangent lines

- [24]. Find the equation of the tangent line to the graph of $y = 2x^3 3x^2 + 4x + 2$ at x = 1.

- (b) y = 5x 4 (c) y = 5x 3 (d) y = 4x 2 (e) y = 4x + 1
- [25]. Which horizontal line is tangent to the graph of $y = x^3 x^2 x + 2$?
 - (a) y = 0
- (b) y = 1 (c) y = 2 (d) y = 3 (e) y = 5

- [26]. If $g(t) = \frac{1}{t^2 + 1}$, then the slope of the tangent line to the graph of g(t) at t = 3 is

- (a) $-\frac{1}{25}$ (b) $-\frac{2}{25}$ (c) $-\frac{1}{50}$ [(d)] $-\frac{3}{50}$ (e) $-\frac{4}{25}$
- [27]. The equation of the tangent line to the graph of y = g(x) at x = 3 is y = 2 + 4(x 3). What is the value of g'(3)?
 - (a) -6
- **(b)** 4
- (c) -12
- **(d)** 0
- (e) 2
- [28]. If the line y = 3 + 4(x 2) is tangent to the graph of g(x) at x = 2 and g(x) is differentiable at x = 2, then g(2) + g'(2) =
 - (a) 2
- **(b)** 3
- (c) 4
- (d) 6
- 7 (e)
- [29]. If the line y = 9 + 3(x 4) is tangent to the graph of G(x) at x = 4 and G(x) is differentiable at x = 4, then G(4) - G'(4) equals
 - (a) 3
- **(b)** 4
- (c) 5
- (d) 6
- **(e)** 9
- [30]. The line y = -1 + 4(x 2) is tangent to the graph of g(x) at x = 2. If g(x) is differentiable at x = 2, and h(x) = xg(x), then h'(2) equals
 - (a) 2
- **(b)** 3
- (c) 4
- (d) 6
- 7 (e)

[**31**]. Let

$$H(s) = \begin{cases} 3(s-1)^2 & \text{if } s \le 1\\ 5(s-1)^2 & \text{if } s > 1 \end{cases}$$

Find the equation of the tangent line to the graph of H(s) at s=2 in the (s,t) plane.

(a) t = 3 + 6s

(b) t = 3 - 6s

t = 5 + 10(s - 2)

- (d) t = 5 + 10(s 1)
- (e) The tangent line does not exist

[**32**]. Let

$$H(s) = |s - 1|$$

Find the equation of the tangent line to the graph of H(s) at s=0 in the (s,t) plane.

(a) t = 1 + s

(b)
$$t = 1 - s$$
 (c) $t = 1$ (d) $t = s$

(e) The tangent line does not exist

The chain rule

[33]. If $f(s) = (s^2 + 5s + 4)^3$, find f'(s).

(a)
$$3(s^2 + 5s + 4)^2$$

(a)
$$3(s^2 + 5s + 4)^2$$
 (b) $3(s^2 + s + 4)^2$

(c)
$$2(s^2+5s+4)\cdot(2s+5)$$

(d)
$$3(s^2+s+4)^2 \cdot (2s+1)$$

(d)
$$3(s^2 + s + 4)^2 \cdot (2s + 1)$$
 (e) $3(s^2 + 5s + 4)^2 \cdot (2s + 5)$

[34]. Find f'(1) where $f(x) = \sqrt{x^4 + 3x^2 + 5}$.

- (a) 1/3
- **(b)** 2/3
- **(c)** 1
- (d) 4/3
- (e) 5/3

[35]. Suppose that h(x) = f(g(x)). Assume that f(3) = 6, f'(3) = 6, g(2) = 3, and g'(2) = 4. Find h'(2).

- (a) -30
- **(b)** 24

- (c) 18 (d) -20 (e) -15

[36]. Suppose that $f(x) = (x^2 - 5)^{3/2}$. Find f'(3).

- (a) 9
- **(b)** 18
- (c) 27
- (d) 12
- **(e)** 36

[37]. Suppose that $g(x) = [f(x)]^3$ and the equation of the tangent line to the graph of f(x) at x = 2 is y = -1 + 4(x - 2). Find g'(2).

- (a) 15
- **(b)** -15
- (c) -1
- (d) -12
- 12 (e)

[38]. Suppose that $f(t) = 12\sqrt{t+7}$. Find the limit

$$\lim_{h \to 0} \frac{f(2+h) - f(2)}{h}.$$

(**Hint:** Relate the limit to the derivative.)

- (a) -1
- **(b)** 0
- (c) 1
- (d) | 2
- **(e)** 3

[39]. Suppose F(x) = g(h(x)). If g(2) = 3, g'(2) = 4, h(0) = 2 and h'(0) = 6, find F'(0).

- (a) 12
- **(b)** 4
- (c) 24
- (d) 6
- **(e)** 3

[40]. Suppose f(t) = H(G(t)) and H(3) = 5, H'(3) = 4, G(2) = 3, and G'(2) = 7. Find f'(2).

- (a) 12
- **(b)** 35
- (c) 28
- (d) 15
- **(e)** 43

[42].	Supp	pose f(t) = g(t)	(3t) an	$\operatorname{nd} F(t) = f(t)$	g(t)	If $g(1) = 1$,	g(3) =	5, g'(1) = 2	and g	g'(3) = 7, what is $F'(1)$?
	(a)	14	(b)	17	(c)	24	(d)	31	(e)	42
[43].		pose $h(x) = [f(x), h'(1)]$.	$f(x)]^2$	and the equa	tion o	f the tangent l	ine to t	the graph of	f(x) a	at $x = 1$ is $y = 3 + 4(x - 1)$.
	(a)	28	(b)	40	(c)	14	(d)	24	(e)	20
[44].	If F (u(v(x)) = u(v(x))	and			= 3 u(1) = = 7 $u'(1) = $				
		F'(1) =								
	(a)	6	(b)	7	(c)	8	(d)	9	(e)	10
[45].	If F	$(x) = u(x^2) +$	$\cdot (v(x))$	$)^2$ and		= 3 u(1) = = 7 $u'(1) = $				
	then	F'(1) =								
	(a)	20	(b)	30	(c)	40	(d)	50	(e)	60
[46].]. If $u(t) = \sqrt{4t^2}$, then $u'(-1) =$									
	(a)	-1	(b)	-2	(c)	0	(d)	1	(e)	2
[47].	Let				e	//\\ 1 · 10	/1	,		
	Eon -	what nannam		alua of t is th		$f(t) = 1 + 10\sqrt{2}$			- ni	.+a19
		_				igent line to t		,		1
	(a)	U	(b)	6	(c)	12	(d)	18	(e)	24
[48].	Supp	pose $H'(4) =$	9. Wh	nat is the val	ue of	F'(2) if $F(s)$	$=H(s^2)$	$^{2})?$		
	(a)	24	(b)	30	(c)	36	(d)	42	(e)	48
Second derivative										
[49].	Supp	pose that $f(x)$) = 64	\sqrt{x} . Find f''	(4).					
	(a)	-2	(b)	-1	(c)	1	(d)	2	(e)	Does not exist

[41]. If $G(s) = u(s^2)$ and u(1) = 10, u'(1) = 4, u(-1) = 7, and u'(-1) = 2, then G'(-1) = 3

(c) 10

(d) 2

(a) -20

(b) 4