MA123, Chapter 8: Idea of the Integral

Chapter Goals:

- Understand the relationship between the area under a curve and the definite integral.
- Understand the relationship between velocity (speed), distance and the definite integral.
- Use the definite integral to compute the average value of a function over an interval

Assignments:

Assignment 18

Assignment 19

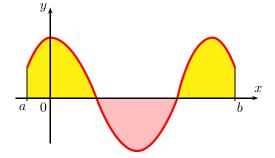
► The basic idea: Definite integrals compute signed area.

Definition: The definite integral

$$\int_{a}^{b} f(x) \, dx$$

computes the signed area between the graph of y = f(x) and the x-axis on the interval [a, b].

- If a < b and the region is above the x-axis, the area has positive sign.
- If a < b and the region is below the x-axis, the area has negative sign.
- If the function takes on both positive and negative values on [a, b], the "positive" and "negative" areas will cancel out.



That is, if a < b, then

 $\int_{a}^{b} f(x) dx = [\text{area of the region(s) lying above the } x\text{-axis}] - [\text{area of the region(s) lying below the } x\text{-axis}]$

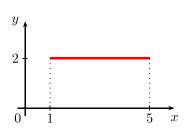
Notation: Given $\int_a^b f(x) dx$, we call f(x) the **integrand**, dx identifies x as the variable, and a and b are called the **limits of integration**.

Applications: Suppose v(t) measures the velocity of an object at time t.

- (a) $\int_a^b v(t) dt$ measures the <u>displacement</u> of the object from t = a to t = b. The displacement is the difference between the object's ending point and starting point.
- (b) $\int_a^b |v(t)| dt$ measures the <u>total distance traveled</u> between t = a and t = b.

If v(t) is always positive, displacement and distance traveled are the same.

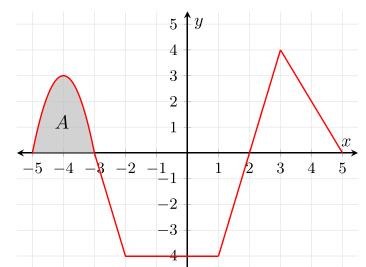
Example 1 (Easy area problem): Find the area of the region in the xy-plane bounded above by the graph of the function f(x) = 2, below by the x-axis, on the left by the line x = 1, and on the right by the line x = 5.



Example 2 (Easy distance traveled problem): Suppose a car is traveling due east at a constant velocity of 55 miles per hour. How far does the car travel between noon and 2:00 pm?

Example 3: Use the graph of f(x) shown to find the following integrals, given that the shaded region has area A.

(a)
$$\int_2^5 f(x) \, dx$$



(b)
$$\int_{-3}^{2} f(x) dx$$

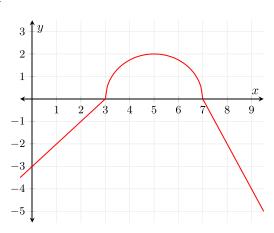
(c)
$$\int_{-3}^{5} f(x) dx$$

$$(d) \int_{-5}^{5} f(x) \, dx$$

Example 4: Suppose f(x) is the greatest integer function, i.e., f(x) equals the greatest integer less than or equal to x. So for example f(2.3) = 2, f(4) = 4, and f(6.9) = 6. Find $\int_{6}^{10} f(x) dx$.

Example 5: Consider g(x) shown here. The graph from x = 3 to x = 7 is a semicircle.

Find
$$\int_1^9 g(x) dx$$
.



Example 6: Let

$$f(x) = \begin{cases} 0 & \text{if } x < -5\\ 4 & \text{if } -5 \le x < 0\\ -3 & \text{if } 0 \le x < 2\\ 0 & \text{if } x \ge 2 \end{cases}$$

and
$$g(x) = \int_{-5}^{x} f(t) dt$$
.

Determine the value of each of the following:

(a)
$$g(-10)$$

(b)
$$g(-1)$$

(c)
$$g(1)$$

(d)
$$g(6)$$

(e) What is the absolute maximum of g(x)?

► Some properties of definite integrals:

$$1. \qquad \int_a^a f(x) \, dx = 0$$

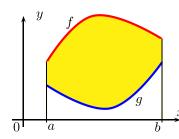
3.
$$\int_a^b (f(x) \pm g(x)) dx = \left(\int_a^b f(x) dx \right) \pm \left(\int_a^b g(x) dx \right)$$

4.
$$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$$

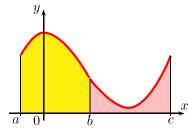
$$2. \qquad \int_a^b k f(x) \, dx = k \, \int_a^b f(x) \, dx$$

5.
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

Geometric illustration of some of the above properties:



Property 3. says that if f and g are positive-valued functions with f greater than g, then $\int_a^b (f(x)-g(x))\,dx$ gives the area between the graphs of f and g. However, we can rephrase this as the area under g subtracted from the area under f, which is given by $\int_a^b f(x)\,dx - \int_a^b g(x)\,dx$.



Property 4. says that if f(x) is a positive valued function, then the area underneath the graph of f(x) between a and b plus the area underneath the graph of f(x) between b and c equals the area underneath the graph of f(x) between a and c.

Property 5. follows from Properties 4. and 1. by letting c = a.

Example 7: Using the graph of f(x) from Example 3, find the integral $\int_2^5 5f(x) dx$.

Example 8:

$$\int_{1}^{4} f(x) dx = 3, \qquad \int_{1}^{9} f(x) dx = -4, \qquad \int_{1}^{4} g(x) dx = 2, \qquad \int_{1}^{9} g(x) dx = 8, \qquad \int_{6}^{9} g(x) dx = 3.$$

Use these values to evaluate the given definite integrals.

(a)
$$\int_{1}^{4} (f(x) - g(x)) dx$$

(b)
$$\int_{9}^{1} (f(x) + g(x)) dx$$

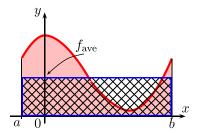
(c)
$$\int_{4}^{9} (7f(x) + 10g(x)) dx$$

(d)
$$\int_4^6 (g(x) - 5) dx$$

▶ Average Values: The average of finitely many numbers $y_1, y_2, ..., y_n$ is $y_{ave} = \frac{y_1 + y_2 + \cdots + y_n}{n}$. What if we are dealing with infinitely many values? More generally, how can we compute the average of a function f defined on an interval?

Average of a function: The average of a function f on an interval [a, b] equals the integral of f over the interval divided by the length of the interval:

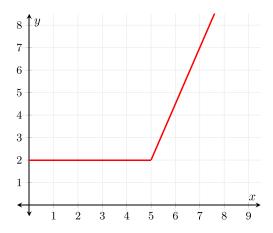
$$f_{\text{ave}} = \frac{\int_{a}^{b} f(x) \, dx}{b - a}.$$



Geometric meaning: If f is a positive valued function, f_{ave} is that number such that the rectangle with base [a, b] and height f_{ave} has the same area as the region underneath the graph of f from a to b.

Example 9: Suppose $f(x) = \begin{cases} 2 & \text{if } x \le 5\\ \frac{1}{2}(5x - 21) & \text{if } x > 5. \end{cases}$

Find the average value of f(x) over the interval [2, 7].



Example 10: Suppose $f(x) = \begin{cases} -3 & \text{if } 4 \le x < 7 \\ 5 & \text{if } 7 \le x < 9. \end{cases}$

(a) Find the average value of f(x) on the interval [4, 9].

(b) Find the average rate of change of f(x) on the interval [4, 9]