
MA123, Supplement: Exponential and logarithmic functions (pp. 315-319, Gootman)

Chapter Goals:
� Review properties of exponential and logarithmic functions.

� Learn how to differentiate exponential and logarithmic functions.

� Learn about exponential growth and decay phenomena.

Assignments: Assignment 10 Assignment 11 Assignment 12

Quick review

Exponential notation: If a is any real number and n is a positive integer, then the n-th power of a is

an = a · a · . . . · a
︸ ︷︷ ︸

n times
The number a is called the base whereas n is called the exponent.

The first and second laws of exponents below allow us to define an for any integer n.
Now, we want to define, for instance, a1/3 in a way that
is consistent with the laws of exponents. We would like:

(

a1/3
)3

= a(1/3)3 = a1 = a; thus a1/3 = 3
√
a

So, by the definition of nth root, we have:

a1/n = n

√
a

Definition of rational exponents: For any

rational exponent m/n in lowest terms, where m
and n are integers and n > 0, we define

am/n = (a1/n)m = ( n

√
a)m or equivalently

am/n = (am)1/n =
n

√
am

If n is even we require that a ≥ 0.

In the table below, a and b are real numbers (6= 0 if needed) and the exponents x and y are rational numbers.

Laws of exponents:

(1.) a0 = 1

(2.) a−x =
1

ax

(3.) axay = ax+y

(4.)
ax

ay
= ax−y

(5.) (ax)y = axy

(6.) (ab)x = axbx

(7.)

(
a

b

)x

=
ax

bx

Now, let a > 0 be a positive number with a 6= 1. Thus
far ax is defined for x a rational number. So, what does,
for instance, 5

√
2 mean? When x is irrational, we succes-

sively approximate x by rational numbers. For instance,
as √

2 ≈ 1.41421 . . .

we successively approximate 5
√
2 with

51.4, 51.41, 51.414, 51.4142, 51.41421, . . .

In practice, we simply use our calculator and find out

5
√
2
≈ 9.73851 . . .

◮ Exponential functions:

Let a > 0 be a positive number with a 6= 1. The
exponential function with base a is defined by

f(x) = ax

for all real numbers x.

Graphs of exponential functions:

The exponential function
f(x) = ax (a > 0, a 6= 1)

has domain R and range (0,∞). The graph of f(x)
has one of these shapes:

x

y

0

1

f(x) = ax for a > 1

x

y

0

1

f(x) = ax

for 0 < a < 1
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The most important base is the number denoted
by the letter e. The number e is defined as

e = lim
n→∞

(

1 +
1

n

)n

Correct to five decimal places (note that e is an
irrational number), e ≈ 2.71828.

The natural exponential function:

The natural exponential function is the
exponential function

f(x) = ex

with base e. It is often referred to as the ex-
ponential function.

Since 2 < e < 3, the graph of
y = ex lies between the graphs
of y = 2x and y = 3x.

x

y

0

1

y = ex

y = 2x

y = 3x

n

(

1 +
1

n

)n

1 2.00000
5 2.48832
10 2.59374

100 2.70481
1,000 2.71692
10,000 2.71815
100,000 2.71827

1,000,000 2.71828

◮ Logarithmic functions: Every exponential function f(x) = ax, with a > 0 and a 6= 1, is a one-to-one

function by the horizontal line test. Thus, it has an inverse function. The inverse function f−1(x) is called the

logarithmic function with base a and is denoted by loga x.

Definition: Let a be a positive number with
a 6= 1. The logarithmic function with base a,
denoted by loga, is defined by

y = loga (x) ⇐⇒ ay = x.

In other words, loga (x) is the exponent to which the
base a must be raised to give x.

Properties of logarithms:

(1.) loga (1) = 0

(2.) loga (a) = 1

(3.) loga (a
x) = x

(4.) aloga (x) = x

Since logarithms are ‘exponents’, the laws of exponents give rise to the laws of logarithms:

Let a be a positive number, with a 6= 1. Let A, B
and C be any real numbers with A > 0 and B > 0.

Laws of logarithms:

(1.) loga (AB) = loga (A) + loga (B);

(2.) loga

(
A

B

)

= loga (A)− loga (B);

(3.) loga (A
C) = C loga (A).

Change of base:

For some purposes, we find it useful to change from
logarithms in one base to logarithms in another
base. One can prove that:

logb x =
loga (x)

loga (b)

Remark: If a one-to-one function f has domain A
and range B, then its inverse function f−1 has domain
B and range A. THUS, the function y = loga (x) is
defined for x > 0 and has range equal to R. More
precisely:

Graphs of logarithmic functions:

The graph of f−1(x) = loga (x) is obtained by reflecting
the graph of f(x) = ax in the line y = x.
(The picture below shows a typical case with a > 1.)

x

y

0

1

1

y = x

y = 2x

y = log2 (x)

The point (1, 0) is on the graph of y = loga (x) (as loga (1) = 0) and the y-axis is a vertical asymptote.
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Common logarithms:

The logarithm with base 10 is called the common logarithm and is denoted by omitting the base:

log (x) := log10 (x).

Natural logarithms: Of all possible bases a for logarithms, it turns out that the most convenient choice

for the purposes of Calculus is the number e.

Definition: The logarithm with base e is called the natural
logarithm and is denoted by ln:

ln (x) := loge (x).

We recall again that, by the definition of inverse functions, we
have

y = ln (x) ⇐⇒ ey = x.

Properties of natural logarithms:

(1.) ln (1) = 0

(2.) ln (e) = 1

(3.) ln (ex) = x

(4.) eln (x) = x

Derivatives

Fact: By filling the table below we can convince ourselves that lim
h→0

eh − 1

h
= 1.

h −0.1 −0.01 −0.001 −0.0001 −0.00001 0.00001 0.0001 0.001 0.01 0.1

eh − 1

h
Now, let f(x) = ex. Using the definition of the derivative and the rules for exponential functions, we have that

d

dx
(ex) = lim

h→0

f(x+ h)− f(x)

h
= lim

h→0

ex+h − ex

h
= lim

h→0

exeh − ex

h
= ex

(

lim
h→0

eh − 1

h

)

= ex

Theorem:
d

dx
(ex) = ex or (ex)′ = ex.

Moreover, it follows by applying the chain rule that

d

dx
(eg(x)) = eg(x)

d

dx
(g(x)) or (eg(x))′ = eg(x) g′(x).

We can use the derivative of ex and the relationship between the exponential and the natural logarithmic

functions to find the derivative of the function ln (x). Namely, take the derivative with respect to x of both

sides of eln (x) = x. We obtain

d

dx
(eln x) =

d

dx
(x) or elnx d

dx
(lnx) = 1 or

d

dx
(lnx) =

1

x
.

Theorem:
d

dx
(ln (x)) =

1

x
or (ln (x))′ =

1

x
.

Moreover, it follows by applying the chain rule that

d

dx
(ln ( g(x))) =

1

g(x)

d

dx
(g(x)) or (ln (g(x)))′ =

g′(x)
g(x)

.
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What about more general derivatives? Observe that we have the identities

ax = eln(a
x) = ex ln (a) loga (x) =

ln (x)

ln (a)
.

Thus using the previous results we obtain the following formulas for the derivatives of general exponential and

logarithmic functions

d

dx
(ax) = ax ln (a) and

d

dx
(loga (x)) =

1

x ln (a)
.

Note: Let us consider the function f(x) = 3x. In Example 16 of Chapter 4, we saw that an approximation

for f ′(1) was given by the value 3.2958. Using the above formula we have that f ′(x) = 3x ln(3), so that the

exact value for f ′(1) is 3 ln (3) = ln (27).

Example 1: Find the derivative with respect to x of f(x) = e4x. Evaluate f ′(x) at x = 1/4.

Compute f ′′(x), f ′′′(x) and f (10)(x). Can you guess what the nth derivative f (n)(x) of f(x) looks like?

Example 2: Find the derivative with respect to x of g(x) = x2ex. Evaluate g′(x) at x = 1.

Example 3: Suppose f(t) = e
√
3t−4. Find

df

dt
.

Example 4: Find the derivative with respect to x of y = ln (ex).
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Example 5: Find the derivative with respect to x of f(x) = x ln (x).

Example 6: Find the derivative with respect to x of y = ln (5x+ 1).

Example 7: Find
d

dx

(

ln (3x4 − 7x2 + 5)

)

.

Example 8: Find the derivative with respect to x of f(x) = ln (ln (ln (x))).

Example 9: Find the derivative with respect to x of h(x) = ex
2+3 ln (x).
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Exponential growth and decay

Let Q(t) denote the amount of a quantity as a function of time. We say that Q(t) grows exponentially as a

function of time if

Q(t) = Q0 e
rt,

where Q0 and r are positive constants that depend on the specific problem and t denotes time. When t = 0,

we see that

Q(0) = Q0 e
r·0 = Q0 · 1 = Q0.

Thus Q0 denotes the amount of the quantity at t = 0. In other words, Q0 is the initial amount of the quantity

at time t = 0. Note that Q(t) > 0 because Q0 > 0 and ert > 0.

Taking the derivative and using the chain rule, we see that

Q′(t) = Q0 · r · ert = r (Q0 e
rt) = r Q(t).

Since Q′(t) = r Q(t), it follows that if a quantity grows exponentially, then its rate of growth is propor-

tional to the quantity present, and the proportionality constant is given by r. Since r > 0 and Q(t) > 0, we

have Q′(t) > 0, as expected because Q(t) is increasing.

Some quantities decrease exponentially. In this case we have Q(t) = Q0 e
−rt, where Q0 and r are positive

constants. Note that we have Q(0) = Q0 and

Q′(t) = Q0 · (−r) · e−rt = −r (Q0 e
−rt) = −r Q(t).

Thus Q′(t) = −r Q(t). We see that Q′(t) < 0 because −r < 0 and Q(t) > 0. Thus the rate of increase of

Q(t) is proportional to the quantity present, and the proportionalityconstant is given by −r.

Suppose that a function g(x) satisfies the property that the slope of the tangent line to the graph of y = g(x)

at any point P is proportional to the y-coordinate of P , i.e., g′(xP ) = r · g(xP ). Then it can be shown that

there are constants C and r such that g(x) = Cerx. In fact, r is the constant of proportionality because

g′(x) = rCerx = rg(x).

Example 10: The graph of a function g(x) passes through the point (0, 5). Suppose that the slope of the

tangent line to the graph of y = g(x) at any point P is 7 times the y-coordinate of P . Find g(2).
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Applications

Many processes that occur in nature, such as calculation of bank interest, population growth, radioactive decay,

heat diffusion, and numerous others, can be modeled using exponential functions. Logarithmic functions are

used in models for the loudness of sounds, the intensity of earthquakes, and many other phenomena.

Compound interest is calculated by the formula:

P (t) = P0

(

1 +
r

n

)nt

where

P (t) = principal after t years
P0 = initial principal
r = interest rate per year
n = number of times interest is compounded per year
t = number of years

Continuously compounded interest

is calculated by the formula:

P (t) = P0 e
rt

where

P (t) = principal after t years
P0 = initial principal
r = interest rate per year
t = number of years

Proof: The interest paid increases as the number n of compounding periods increases. If m =
n

r
, then:

P0

(

1 +
r

n

)nt

= P0

[(

1 +
r

n

)n/r]rt

= P0

[(

1 +
1

n/r

)n/r]rt

= P0

[(

1 +
1

m

)m]rt

.

As n becomes large, m also becomes large. Since lim
m→∞

(

1+
1

m

)m

= e we obtain the formula for continuously

compounded interest.

Example 11: If $10, 000 is invested at an interest rate of 6%, find the value of the investment at the end of

8 years if the interest is compounded continuously.

Example 12: How many years will it take an investment to quadruple in value if the interest is compounded

continuously at a rate of 7%?
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Example 13: An amount of P0 dollars is invested at 5% interest compounded continuously. Find P0 if at

the end of 10 years the value of the investment is $20, 000.

Exponential models of population growth:

The formula for population growth of several species is
the same as that for continuously compounded interest.
In fact in both cases the rate of growth of a population
(or an investment) per time period is proportional to the
size of the population (or the amount of an investment).

Remark: Biologists sometimes express the growth
rate r in terms of the doubling-time t0, the time

required for the population to double in size: r =
ln (2)

t0
.

Exponential growth model If P0 is the
initial size of a population that experiences
exponential growth, then the population P (t)
at time t increases according to the model

P (t) = P0e
rt

where r is the relative rate of growth of the
population (expressed as a proportion of the
population).

Note: If t0 denotes the doubling-time of a population, we can rewrite the expression for P (t) as follows

P (t) = P0 e
rt = P0 e

(ln (2)/t0)·t = P0

(

eln (2)

)t/t0

= P0 2
t/t0 .

Example 14: A bacteria culture starts with 2, 000 bacteria and the population triples after 5 hours. If we

express the number of bacteria after t hours as

y(t) = a ebt

find a and b.

Example 15: A bacteria culture starts with 5, 000 bacteria and the population quadruples after 3 hours.

Find an expression for the number P (t) of bacteria after t hours.
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Example 16: If the bacteria in a culture doubles in 3 hours, how many hours will it take before 7 times the

original number is present?

Example 17: If the world population in 2010 was 6 billion and it were to grow exponentially with a growth

constant r =
1

30
ln (2), find the population (in billions) in the year 2070.

Radioactive decay:

Radioactive substances decay by spontaneously emitting
radiation. In this situation, the rate of decay is
proportional to the mass of the substance.

This is analogous to population growth, except that the
quantity of radioactive material decreases.

Remark: Physicists sometimes express the rate of
decay in terms of the half-life, the time required for
half the mass to decay.

Radioactive decay model:

If Q0 is the initial quantity of a radioactive sub-
stance with half-life t0, then the quantity Q(t)
remaining at time t is modeled by the function

Q(t) = Q0e
−rt

where r =
ln (2)

t0
.

Note: If t0 denotes the half-life of a radioactive substance, we can rewrite the expression for Q(t) as follows

Q(t) = Q0 e
−rt = Q0 e

−(ln (2)/t0)·t = Q0

(

eln (2)

)−t/t0

= Q0 2
−t/t0 = Q0 (2

−1)t/t0 = Q0

(
1

2

)t/t0

.

Example 18: The half-life of Cesium-137 is 30 years. Suppose we have a 100 gram sample. How much of

the sample will remain after 50 years?
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