1. Find an equation for the line through the points \((-4, -3)\) and \((1, 7)\).

2. Find a simplification of the expression \(\frac{f(x + h) - f(x)}{h}\) where \(f(x) = x^2 + 5\).

3. If the graph of \(f(x)\) is

 \[
 \text{graph of } f(x)
 \]

match the functions \(3f(x)\), \(f(x - 3)\), and \(f(x) + 3\) with the graphs below:
4. Consider \(f(x) = 2x - 4 \) and \(g(x) = \frac{1}{x + 2} \). Find the simplified form of the composition \((g \circ f)(x)\) (including any restrictions on \(x\)).

5. Let \(f(x) = \frac{2x + 7}{3 - 4x} \). Find the inverse, \(f^{-1}(x) \) of \(f \). What are the domains of \(f(x) \) and \(f^{-1}(x) \)? Carefully label the domain of each function.

6. Find the center and radius of the circle with the following equation:

\[
x^2 + y^2 + 10x - 6y + 30 = 0
\]