MA 137 Worksheet #23

Sections 5.5 and 5.7 11/5/20

1. Determine whether L'Hôpital's Rule can be used to evaluate the following limits. If so, then use L'Hôpital's Rule to evaluate the limit.

(a)
$$\lim_{x \to 4} \frac{(4-x)^2}{16-x^2}$$

(b)
$$\lim_{x \to \infty} \frac{\sqrt{8 - x + 4x^2}}{5x + 3}$$

(c)
$$\lim_{x \to 0} \frac{e^x - x - 1}{x^2}$$

$$(\mathsf{d}) \quad \lim_{x \longrightarrow 0^+} x^{3\sin(2x)}$$

2. Use the stability criterion to characterize the stability of the equilibria (fixed points) of the following recursive sequences:

(a)
$$x_{n+1} = \frac{1}{4}x_n^2 + x_n - \frac{1}{4}$$
, $n = 0, 1, 2, ...$

(b)
$$x_{t+1} = \frac{5x_t^2}{4 + x_t^2}, t = 0, 1, 2, \dots$$

Use cobwebbing to decide to which value x_t converges as $t\longrightarrow\infty$ if

(i)
$$x_0 = 0.5$$
 and (ii) $x_0 = 3$.

(c) We consider density-dependent population growth models of the form $N_{t+1}=R(N_t)N_t$. The function $R(N)=rN^{1-\gamma}$ describes the per capita growth. Find all nontrivial fixed points \widehat{N} (i.e., $\widehat{N}>0$) and determine the stability as a function of the parameter values. We assume that the function parameters are r>0 and $\gamma>1$.