MA 137 Worksheet \#25

Section 6.1

11/17/20

1. The velocity of a train at several times is shown in the table below. Assume that the velocity changes linearly between each time given.

$t=$ time in minutes	0	3	6	9
$v(t)=$ velocity in Km / h	20	80	100	140

(a) Plot the velocity of the train versus time.
(b) Compute the left and right-endpoint approximations to the area under the graph of v.
(c) Explain why these approximate areas are also an approximation to the distance that the train travels.
2. Let $f(x)=\frac{1}{x}$. Divide the interval $[1,3]$ into five subintervals of equal length and compute R_{5} and L_{5}, the left and right endpoint approximations to the area under the graph of f in the interval $[1,3]$. Is R_{5} larger or smaller than the true area? Is L_{5} larger or smaller than the true area?
3. Let $f(x)=\sqrt{1-x^{2}}$. Divide the interval $[0,1]$ into four equal subintervals and compute L_{4} and R_{4}, the left and right-endpoint approximations to the area under the graph of f. Is R_{4} larger or smaller than the true area? Is L_{4} larger or smaller than the true area? What can you conclude about the value π ?

