MA 137 Worksheet #27

Section 6.2 11/24/20

1. Suppose $\int_0^x f(t)dt = \sin(x)$. Then find the following integrals:

(a)
$$\int_0^{\pi} f(t) dt$$

(b)
$$\int_{\pi/2}^{\pi} f(t) dt$$

(c)
$$\int_{\pi}^{-\pi} f(t) dt$$

2. Use the Fundamental Theorem of Calculus to find the derivative of the following functions:

(a)
$$f(x) = \int_x^1 (2+t^4)^5 dt$$

(b)
$$g(x) = \int_0^{x^2} \sqrt[3]{1+r^3} \, dr$$

(c)
$$h(x) = \int_{\sqrt{x}}^{x^2} \sqrt{t} \sin(t) dt$$

3. Find a f(t) and a such that:

$$6 + \int_a^x \frac{f(t)}{t^2} dt = 2\sqrt{x}.$$

4. Use l'Hôpital's Rule to evaluate:

$$\lim_{x \to 0} \frac{\int_0^x e^t dt}{3x}.$$

5. Find the following:

(a)
$$\int_{-2}^{7} \frac{1}{x^5} dx$$

$$(b) \qquad \int_{-1}^1 e^{x+1} \, dx$$

(c)
$$\int_{\pi/2}^{\pi} \left(1 + 2\sin(x) + \frac{3}{\sqrt{x}} \right) dx$$